Suppr超能文献

驱动蛋白-14马达的聚集能够实现植物中基于微管的持续性逆向运输。

Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants.

作者信息

Jonsson Erik, Yamada Moé, Vale Ronald D, Goshima Gohta

机构信息

Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA.

Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA ; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

出版信息

Nat Plants. 2015 Jul;1(7). doi: 10.1038/NPLANTS.2015.87.

Abstract

The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.

摘要

在大多数真核细胞中,分子马达驱动蛋白和动力蛋白沿着微管(MTs)进行双向运动。然而,陆地植物是一个显著的例外,因为它们含有大量的驱动蛋白,但缺乏胞质动力蛋白,即最重要的持续逆行转运体。目前尚不清楚植物在没有动力蛋白的情况下如何实现货物的逆行运输。在这里,我们分析了苔藓中六种负端定向驱动蛋白-14马达成员的运动性,发现没有一种作为天然二聚体具有持续性。然而,当人工聚集成低至二聚体的二聚体时,VI型驱动蛋白-14(KCBP(类驱动蛋白钙调蛋白结合蛋白)的同源物)表现出高度持续和快速的运动性(高达0.6μm/s)。附着在脂质体上的多个kin14-VI二聚体也能诱导这种膜货物在几微米的距离上运输。与这些结果一致,在苔藓细胞中对绿色荧光蛋白标记的kin14-VI的观察显示,荧光斑点向胞质微管的负端持续移动。这些数据表明,驱动蛋白-14马达的聚集是植物中一种不依赖动力蛋白的逆行运输机制。

相似文献

2
Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells.
J Cell Biol. 2017 Jun 5;216(6):1705-1714. doi: 10.1083/jcb.201610065. Epub 2017 Apr 25.
3
The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in .
Plant Cell. 2018 Jul;30(7):1496-1510. doi: 10.1105/tpc.18.00038. Epub 2018 Jun 7.
4
Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
Traffic. 2016 May;17(5):475-86. doi: 10.1111/tra.12385. Epub 2016 Mar 28.
6
Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase.
Cell Struct Funct. 2019;44(2):95-104. doi: 10.1247/csf.19015.
8
Functional diversification of the kinesin-14 family in land plants.
FEBS Lett. 2018 Jun;592(12):1918-1928. doi: 10.1002/1873-3468.13094. Epub 2018 Jun 1.

引用本文的文献

1
Optogenetic and chemical genetic tools for rapid repositioning of vimentin intermediate filaments.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202504004. Epub 2025 Jul 8.
2
Class II kinesin-12 facilitates cell plate formation by transporting cell plate materials in the phragmoplast.
Nat Plants. 2025 Feb;11(2):340-358. doi: 10.1038/s41477-025-01909-x. Epub 2025 Feb 4.
3
Insights into the role of phosphorylation on microtubule cross-linking by PRC1.
Mol Biol Cell. 2025 Mar 1;36(3):ar34. doi: 10.1091/mbc.E24-12-0565. Epub 2025 Jan 22.
4
An Arabidopsis Kinesin-14D motor is associated with midzone microtubules for spindle morphogenesis.
Curr Biol. 2024 Aug 19;34(16):3747-3762.e6. doi: 10.1016/j.cub.2024.07.020.
5
Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella.
J Mol Evol. 2024 Aug;92(4):381-401. doi: 10.1007/s00239-024-10178-9. Epub 2024 Jun 26.
6
Modeling specific aneuploidies: from karyotype manipulations to biological insights.
Chromosome Res. 2023 Aug 29;31(3):25. doi: 10.1007/s10577-023-09735-7.
7
A kinesin-based approach for inducing chromosome-specific mis-segregation in human cells.
EMBO J. 2023 May 15;42(10):e111559. doi: 10.15252/embj.2022111559. Epub 2023 Apr 11.
9
A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis.
Nat Plants. 2022 Nov;8(11):1275-1288. doi: 10.1038/s41477-022-01261-4. Epub 2022 Oct 31.
10
Single-motor and multi-motor motility properties of kinesin-6 family members.
Biol Open. 2022 Oct 15;11(10). doi: 10.1242/bio.059533. Epub 2022 Oct 14.

本文引用的文献

1
Imaging Mitosis in the Moss Physcomitrella patens.
Methods Mol Biol. 2016;1413:263-82. doi: 10.1007/978-1-4939-3542-0_17.
3
Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens.
Plant Cell. 2015 Jan;27(1):228-42. doi: 10.1105/tpc.114.134817. Epub 2015 Jan 23.
5
6
Bidirectional cargo transport: moving beyond tug of war.
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28. doi: 10.1038/nrm3853. Epub 2014 Aug 16.
7
Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes.
Science. 2014 Jul 18;345(6194):337-41. doi: 10.1126/science.1254198. Epub 2014 Jun 19.
8
Endogenous localizome identifies 43 mitotic kinesins in a plant cell.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1053-61. doi: 10.1073/pnas.1311243111. Epub 2014 Mar 3.
10
Inferring subunit stoichiometry from single molecule photobleaching.
J Gen Physiol. 2013 Jun;141(6):737-46. doi: 10.1085/jgp.201310988.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验