Wen Tao, He Weiwei, Chong Yu, Liu Yi, Yin Jun-Jie, Wu Xiaochun
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
Phys Chem Chem Phys. 2015 Oct 14;17(38):24937-43. doi: 10.1039/c5cp04046a.
Recently, because of the great advances in tailoring their shape and structure, palladium nanoparticles (Pd NPs) have been receiving increasing attention in biomedical fields apart from their traditional application as industrial catalysts. When considering the potential uses of Pd NPs in biomedicine, their catalytic properties need to be evaluated under physiologically relevant conditions. In this article, we demonstrate that Pd nanostructures (NSs, both commercial Pd NPs and in-house-prepared Au@Pd nanorods) can induce O2 or ˙OH production depending on pH values in the presence of H2O2. We observed that O2 is produced under neutral and alkaline conditions but ˙OH under acidic conditions. We also found that Pd NSs can scavenge superoxide and singlet oxygen, which may provide protection in biological systems. On the other hand, their oxidase-like activity may accelerate the oxidation of ascorbic acid and thus may produce negative biological effects. The presented study will provide useful guidance for designing noble metal nanostructures with desired catalytic and biological properties in biomedical applications.
最近,由于在定制钯纳米颗粒(Pd NPs)的形状和结构方面取得了巨大进展,它们除了作为工业催化剂的传统应用外,在生物医学领域也受到了越来越多的关注。在考虑Pd NPs在生物医学中的潜在用途时,需要在生理相关条件下评估它们的催化性能。在本文中,我们证明了钯纳米结构(NSs,包括商业Pd NPs和自制的Au@Pd纳米棒)在H2O2存在下可根据pH值诱导产生O2或˙OH。我们观察到在中性和碱性条件下产生O2,而在酸性条件下产生˙OH。我们还发现Pd NSs可以清除超氧化物和单线态氧,这可能在生物系统中提供保护。另一方面,它们的类氧化酶活性可能会加速抗坏血酸的氧化,从而可能产生负面的生物学效应。本研究将为在生物医学应用中设计具有所需催化和生物学特性的贵金属纳米结构提供有用的指导。