Li Lan, Zhang Ping, Wang Wei-Ming, Lin Hongtao, Zerdoum Aidan B, Geiger Sarah J, Liu Yangchen, Xiao Nicholas, Zou Yi, Ogbuu Okechukwu, Du Qingyang, Jia Xinqiao, Li Jingjing, Hu Juejun
University of Delaware, Department of Materials Science &Engineering, Newark, Delaware 19716, USA.
Tianjin University, School of Electronic and Information Engineering, Tianjin 300072, China.
Sci Rep. 2015 Sep 7;5:13832. doi: 10.1038/srep13832.
Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.
集成光子学提供了一个小型化且具有潜在可植入性的平台,用于在体外和体内环境中操控并增强光与生物分子或组织之间的相互作用,因此正越来越多地被应用于从疾病诊断到光遗传学神经调节等广泛的生物医学领域。然而,传统上用于光子集成的衬底的机械刚性与柔软的生物组织从根本上不相容。光子器件加工中使用的材料和化学物质的细胞毒性对这些生物光子学应用构成了另一个限制。在此,我们展示了薄膜二氧化钛是一种适用于生物相容性和柔性集成光子学的可行材料。非晶态二氧化钛薄膜是通过一种低温(<250°C)溶胶 - 凝胶工艺沉积的,该工艺与在塑料衬底上的单片集成完全兼容。使用溶胶 - 凝胶二氧化钛材料制造了高折射率对比度的柔性光波导和谐振器,并测量到高达20,000的谐振器品质因数。遵循多中性轴机械设计,这些器件表现出显著的机械柔韧性,并且能够承受反复折叠而不影响其光学性能。最后,我们通过体外细胞培养测试验证了溶胶 - 凝胶二氧化钛器件的低细胞毒性。这些结果证明了溶胶 -凝胶二氧化钛作为新型生物光子器件的一个有前景的材料平台的潜力。