Suppr超能文献

利用蛋白质分析技术解读哮喘生物标志物

Deciphering Asthma Biomarkers with Protein Profiling Technology.

作者信息

Kuang Zhizhou, Wilson Jarad J, Luo Shuhong, Zhu Si-Wei, Huang Ruo-Pan

机构信息

RayBiotech, Inc., Guangzhou 510600, China ; RayBiotech, Inc., 3607 Parkway Lane, Norcross, GA 30092, USA ; South China Biochip Research Center, Guangzhou 510600, China.

RayBiotech, Inc., 3607 Parkway Lane, Norcross, GA 30092, USA.

出版信息

Int J Inflam. 2015;2015:630637. doi: 10.1155/2015/630637. Epub 2015 Aug 6.

Abstract

Asthma is a chronic inflammatory disease of the airways, resulting in bronchial hyperresponsiveness with every allergen exposure. It is now clear that asthma is not a single disease, but rather a multifaceted syndrome that results from a variety of biologic mechanisms. Asthma is further problematic given that the disease consists of many variants, each with its own etiologic and pathophysiologic factors, including different cellular responses and inflammatory phenotypes. These facets make the rapid and accurate diagnosis (not to mention treatments) of asthma extremely difficult. Protein biomarkers can serve as powerful detection tools in both clinical and basic research applications. Recent endeavors from biomedical researchers have developed technical platforms, such as cytokine antibody arrays, that have been employed and used to further the global analysis of asthma biomarker studies. In this review, we discuss potential asthma biomarkers involved in the pathophysiologic process and eventual pathogenesis of asthma, how these biomarkers are being utilized, and how further testing methods might help improve the diagnosis and treatment strain that current asthma patients suffer.

摘要

哮喘是一种气道慢性炎症性疾病,每次接触过敏原都会导致支气管高反应性。现在很清楚,哮喘不是单一疾病,而是由多种生物学机制导致的多方面综合征。鉴于该疾病由许多变体组成,每个变体都有其自身的病因和病理生理因素,包括不同的细胞反应和炎症表型,哮喘更是问题重重。这些方面使得哮喘的快速准确诊断(更不用说治疗)极其困难。蛋白质生物标志物在临床和基础研究应用中都可作为强大的检测工具。生物医学研究人员最近的努力开发了技术平台,如细胞因子抗体阵列,已被用于并用于进一步全面分析哮喘生物标志物研究。在这篇综述中,我们讨论了参与哮喘病理生理过程及最终发病机制的潜在哮喘生物标志物、这些生物标志物是如何被利用的,以及进一步的检测方法如何有助于改善当前哮喘患者所承受的诊断和治疗压力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b91/4543788/2bd9faca7cb9/IJI2015-630637.001.jpg

相似文献

1
Deciphering Asthma Biomarkers with Protein Profiling Technology.
Int J Inflam. 2015;2015:630637. doi: 10.1155/2015/630637. Epub 2015 Aug 6.
4
Recent advances in asthma biomarker research.
Ther Adv Respir Dis. 2013 Oct;7(5):297-308. doi: 10.1177/1753465813496863. Epub 2013 Aug 1.
5
Biomolecular markers in assessment and treatment of asthma.
Respirology. 2014 May;19(4):514-23. doi: 10.1111/resp.12284. Epub 2014 Apr 3.
6
MicroRNA Profiling in Asthma: Potential Biomarkers and Therapeutic Targets.
Am J Respir Cell Mol Biol. 2017 Dec;57(6):642-650. doi: 10.1165/rcmb.2016-0231TR.
7
Mucosal inflammation in asthma.
Am Rev Respir Dis. 1990 Aug;142(2):434-57. doi: 10.1164/ajrccm/142.2.434.
8
The role of progranulin (PGRN) in the modulation of anti-inflammatory response in asthma.
Cent Eur J Immunol. 2019;44(1):97-101. doi: 10.5114/ceji.2019.83267. Epub 2019 Apr 15.
10
IL-5 and IL-5 receptor in asthma.
Mem Inst Oswaldo Cruz. 1997;92 Suppl 2:75-91. doi: 10.1590/s0074-02761997000800012.

引用本文的文献

1
Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review).
Int J Oncol. 2025 Oct;67(4). doi: 10.3892/ijo.2025.5787. Epub 2025 Aug 24.
2
MCP-1-2518 (A>G) polymorphism and asthma risk: a pilot case-control study in Cameroon.
Pan Afr Med J. 2023 Apr 12;44:166. doi: 10.11604/pamj.2023.44.166.38544. eCollection 2023.
4
A Novel Function for 15-Lipoxygenases in Cholesterol Homeostasis and CCL17 Production in Human Macrophages.
Front Immunol. 2018 Aug 24;9:1906. doi: 10.3389/fimmu.2018.01906. eCollection 2018.
5
New Insights into the Tumor Microenvironment Utilizing Protein Array Technology.
Int J Mol Sci. 2018 Feb 13;19(2):559. doi: 10.3390/ijms19020559.
6
Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency.
Biomicrofluidics. 2016 Jun 7;10(3):034114. doi: 10.1063/1.4953140. eCollection 2016 May.

本文引用的文献

1
The immunology of asthma.
Nat Immunol. 2015 Jan;16(1):45-56. doi: 10.1038/ni.3049.
2
Mepolizumab treatment in patients with severe eosinophilic asthma.
N Engl J Med. 2014 Sep 25;371(13):1198-207. doi: 10.1056/NEJMoa1403290. Epub 2014 Sep 8.
3
Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma.
Am J Respir Crit Care Med. 2014 Sep 15;190(6):639-48. doi: 10.1164/rccm.201403-0505OC.
4
Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo.
J Exp Med. 2014 Jul 28;211(8):1657-72. doi: 10.1084/jem.20131800.
5
Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model.
PLoS One. 2014 Jun 23;9(6):e100394. doi: 10.1371/journal.pone.0100394. eCollection 2014.
6
CCL11 as a potential diagnostic marker for asthma?
J Asthma. 2014 Oct;51(8):847-54. doi: 10.3109/02770903.2014.917659. Epub 2014 May 13.
7
Dichloroacetate prevents restenosis in preclinical animal models of vessel injury.
Nature. 2014 May 29;509(7502):641-4. doi: 10.1038/nature13232. Epub 2014 Apr 20.
8
Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data.
J Allergy Clin Immunol. 2014 May;133(5):1280-8. doi: 10.1016/j.jaci.2013.11.042. Epub 2014 Feb 28.
9
Advances in adult asthma diagnosis and treatment in 2013.
J Allergy Clin Immunol. 2014 Jan;133(1):49-56. doi: 10.1016/j.jaci.2013.11.005.
10
IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation.
J Exp Med. 2013 Dec 16;210(13):2951-65. doi: 10.1084/jem.20130071. Epub 2013 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验