May Matthias M, Lewerenz Hans-Joachim, Lackner David, Dimroth Frank, Hannappel Thomas
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.
Department of Physcis, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 5, D-98693 Ilmenau, Germany.
Nat Commun. 2015 Sep 15;6:8286. doi: 10.1038/ncomms9286.
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.
光合作用是大自然将间歇性太阳辐射转化为可储存能量的途径,然而其用于工业能源供应时却因效率低下而受到阻碍。人工光合作用为高效、稳定的碳中性可再生能源生产提供了一个有前景的替代方案。通过光电化学水分解直接制氢的方法利用定制的串联吸收结构来模拟自然光合作用的Z方案。在此,通过在室温下对串联结构进行化学表面转化并沉积催化剂,产生的光电流接近吸收体的理论极限,太阳能到氢能的效率达到14%。恒电位辅助光电极效率为17%。明显超过了集成系统目前的基准。文中介绍了原位界面转化、电子性能改善和化学钝化的细节。表面功能化过程具有广泛的适用性且可精确控制,这使得高效、稳定的氢气发生器能够进一步发展。