Suppr超能文献

相似文献

2
Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
ACS Nano. 2014 Oct 28;8(10):10403-13. doi: 10.1021/nn503751s. Epub 2014 Oct 7.
3
Photoelectrochemical devices for solar water splitting - materials and challenges.
Chem Soc Rev. 2017 Jul 31;46(15):4645-4660. doi: 10.1039/c6cs00306k.
4
Biomimetic and microbial approaches to solar fuel generation.
Acc Chem Res. 2009 Dec 21;42(12):1899-909. doi: 10.1021/ar900127h.
5
Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.
J Am Chem Soc. 2017 Feb 1;139(4):1675-1683. doi: 10.1021/jacs.6b12164. Epub 2017 Jan 18.
6
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
ChemSusChem. 2017 Nov 23;10(22):4277-4305. doi: 10.1002/cssc.201701598. Epub 2017 Nov 14.
8
Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
Acc Chem Res. 2017 Jan 17;50(1):112-121. doi: 10.1021/acs.accounts.6b00523. Epub 2016 Dec 23.
9
Solar fuels via artificial photosynthesis.
Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.
10
From natural to artificial photosynthesis.
J R Soc Interface. 2013 Jan 30;10(81):20120984. doi: 10.1098/rsif.2012.0984. Print 2013 Apr 6.

引用本文的文献

1
The InP(100) Surface Phase Diagram: From the Gas Phase to the Electrochemical Environment.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):8601-8609. doi: 10.1021/acsami.4c20370. Epub 2025 Jan 21.
2
Photoemission Study of GaN Passivation Layers and Band Alignment at GaInP(100) Heterointerfaces.
ACS Appl Mater Interfaces. 2025 Jan 29;17(4):7087-7097. doi: 10.1021/acsami.4c17453. Epub 2025 Jan 14.
3
Solar-Driven Sustainability: III-V Semiconductor for Green Energy Production Technologies.
Nanomicro Lett. 2024 Jul 11;16(1):244. doi: 10.1007/s40820-024-01412-6.
4
Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling.
Nat Commun. 2024 Jun 10;15(1):4944. doi: 10.1038/s41467-024-49273-2.
5
Flexible Monolithic Bifunctional Device Based on a Lift-off (In,Ga)N Film for Both Lighting and Self-Driven Detection.
ACS Omega. 2024 Feb 3;9(7):8117-8122. doi: 10.1021/acsomega.3c08503. eCollection 2024 Feb 20.
8
The interfacial structure of InP(100) in contact with HCl and HSO studied by reflection anisotropy spectroscopy.
RSC Adv. 2022 Nov 15;12(50):32756-32764. doi: 10.1039/d2ra05159a. eCollection 2022 Nov 9.
9
Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution.
Chem Sci. 2022 Jun 17;13(27):8074-8079. doi: 10.1039/d2sc02638d. eCollection 2022 Jul 13.
10
Interatomic Potential for InP.
Materials (Basel). 2022 Jul 16;15(14):4960. doi: 10.3390/ma15144960.

本文引用的文献

1
Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.
Science. 2014 Sep 26;345(6204):1593-6. doi: 10.1126/science.1258307.
2
Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.
Science. 2014 May 30;344(6187):1005-9. doi: 10.1126/science.1251428.
3
Silicon based tandem cells: novel photocathodes for hydrogen production.
Phys Chem Chem Phys. 2014 Jun 28;16(24):12043-50. doi: 10.1039/c3cp55198a.
4
Solar hydrogen generation with wide-band-gap semiconductors: GaP(100) photoelectrodes and surface modification.
Chemphyschem. 2012 Aug 27;13(12):3053-60. doi: 10.1002/cphc.201200432. Epub 2012 Aug 14.
5
Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4.
J Am Chem Soc. 2011 Nov 16;133(45):18370-7. doi: 10.1021/ja207348x. Epub 2011 Oct 20.
6
Anthropogenic chemical carbon cycle for a sustainable future.
J Am Chem Soc. 2011 Aug 24;133(33):12881-98. doi: 10.1021/ja202642y. Epub 2011 Jul 7.
7
Electrochemical photolysis of water at a semiconductor electrode.
Nature. 1972 Jul 7;238(5358):37-8. doi: 10.1038/238037a0.
8
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting.
Science. 1998 Apr 17;280(5362):425-7. doi: 10.1126/science.280.5362.425.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验