Suppr超能文献

GaN 钝化层的光发射研究及 GaInP(100)异质界面处的能带排列

Photoemission Study of GaN Passivation Layers and Band Alignment at GaInP(100) Heterointerfaces.

作者信息

Shekarabi Sahar, Zare Pour Mohammad Amin, Su Haoqing, Zhang Wentao, He Chengxing, Hanke Kai Daniel, Romanyuk Oleksandr, Paszuk Agnieszka, Jaegermann Wolfram, Hu Shu, Hannappel Thomas

机构信息

Grundlagen von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany.

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 29;17(4):7087-7097. doi: 10.1021/acsami.4c17453. Epub 2025 Jan 14.

Abstract

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose. The band alignment between such a protection layer and the III-V semiconductor should be aligned to minimize corrosion and nonradiative interfacial recombination and to promote selective charge carrier transport. Here, we investigate the band alignment between GaN passivation layers and n-type doped GaInP(100) photoabsorbers and grew n-type GaInP(100) epitaxially by metalorganic vapor phase epitaxy on oxidized GaAs(100) substrates to mimic a realistic preparation sequence. We prepared 1-20 nm GaN films on top employing atomic layer deposition and studied the band alignment at the GaN/GaInP(100) heterointerface by X-ray and ultraviolet photoelectron spectroscopy. Due to the limited emission depth of photoelectrons, we determined the band alignment by a series of measurements, in which we increased the thickness of the GaN films successively. The n-GaInP(100) surfaces, prepared with a well-known phosphorus-terminated p(2 × 2)/c(4 × 2) reconstruction, show an upward surface band bending (BB) of 0.38 eV and a Fermi level pinning due to the present surface states. Upon oxidation, the surface states are partially passivated, resulting in a reduction of the BB to 0.16 eV and a valence band offset (VBO) between the GaInP(100) and the thin oxide layer of 2.01 eV. Applying Kraut's approach, we identified a VBO of 1.90 eV and a conduction band offset of 0.44 eV between GaInP(100) with a thin oxide layer and the GaN passivation layer. We conclude that the GaN is a well-suited passivation layer for PEC cells and facilitates selective transport of photogenerated electrons.

摘要

迄今为止,以GaInP作为顶部光吸收层的基于III-V族半导体的串联器件展现出最高的太阳能-电力或太阳能-燃料转换效率。然而,在光电化学(PEC)电池中,就光化学稳定性而言,III-V族半导体较为敏感,因此需要合适的功能层进行电子和化学钝化。氮化镓(GaN)薄膜被认为是实现这一目的的有前景的选择。这种保护层与III-V族半导体之间的能带排列应相互匹配,以尽量减少腐蚀和非辐射界面复合,并促进选择性电荷载流子传输。在此,我们研究了GaN钝化层与n型掺杂GaInP(100)光吸收层之间的能带排列,并通过金属有机气相外延在氧化的GaAs(100)衬底上外延生长n型GaInP(100),以模拟实际的制备过程。我们采用原子层沉积在顶部制备了1 - 20纳米的GaN薄膜,并通过X射线和紫外光电子能谱研究了GaN/GaInP(100)异质界面处的能带排列。由于光电子的发射深度有限,我们通过一系列测量来确定能带排列,在这些测量中我们依次增加GaN薄膜的厚度。用众所周知的磷终止的p(2×2)/c(4×2)重构制备的n-GaInP(100)表面,由于存在表面态,显示出0.38电子伏特的向上表面能带弯曲(BB)和费米能级钉扎。氧化后,表面态部分被钝化,导致BB降低至0.16电子伏特,并且GaInP(100)与薄氧化层之间的价带偏移(VBO)为2.01电子伏特。应用克劳特方法,我们确定了具有薄氧化层的GaInP(100)与GaN钝化层之间的VBO为1.90电子伏特,导带偏移为0.44电子伏特。我们得出结论,GaN是一种非常适合PEC电池的钝化层,并有助于光生电子的选择性传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8db/11788992/eb9ce0e390a9/am4c17453_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验