Liang Feng, van de Krol Roel, Abdi Fatwa F
Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, Germany.
Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 124, Berlin, Germany.
Nat Commun. 2024 Jun 10;15(1):4944. doi: 10.1038/s41467-024-49273-2.
Photoelectrochemical (PEC) water splitting is a promising approach for sustainable hydrogen production. Previous studies have focused on devices operated at atmospheric pressure, although most applications require hydrogen delivered at elevated pressure. Here, we address this critical gap by investigating the implications of operating PEC water splitting directly at elevated pressure. We evaluate the benefits and penalties associated with elevated pressure operation by developing a multiphysics model that incorporates empirical data and direct experimental observations. Our analysis reveals that the operating pressure influences bubble characteristics, product gas crossover, bubble-induced optical losses, and concentration overpotential, which are crucial for the overall device performance. We identify an optimum pressure range of 6-8 bar for minimizing losses and achieving efficient PEC water splitting. This finding provides valuable insights for the design and practical implementation of PEC water splitting devices, and the approach can be extended to other gas-producing (photo)electrochemical systems. Overall, our study demonstrates the importance of elevated pressure in PEC water splitting, enhancing the efficiency and applicability of green hydrogen generation.
光电化学(PEC)水分解是一种很有前景的可持续制氢方法。以往的研究主要集中在大气压下运行的装置,尽管大多数应用需要高压输送的氢气。在此,我们通过研究直接在高压下运行PEC水分解的影响来填补这一关键空白。我们通过开发一个包含经验数据和直接实验观察结果的多物理模型,评估与高压运行相关的利弊。我们的分析表明,操作压力会影响气泡特性、产物气体渗透、气泡引起的光学损失和浓差过电位,这些对整个装置的性能至关重要。我们确定了一个6-8巴的最佳压力范围,以尽量减少损失并实现高效的PEC水分解。这一发现为PEC水分解装置的设计和实际应用提供了有价值的见解,并且该方法可以扩展到其他产气(光)电化学系统。总体而言,我们的研究证明了高压在PEC水分解中的重要性,提高了绿色制氢的效率和适用性。