文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于光动力癌症治疗的药物载体

Drug Carrier for Photodynamic Cancer Therapy.

作者信息

Debele Tilahun Ayane, Peng Sydney, Tsai Hsieh-Chih

机构信息

Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.

Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan.

出版信息

Int J Mol Sci. 2015 Sep 14;16(9):22094-136. doi: 10.3390/ijms160922094.


DOI:10.3390/ijms160922094
PMID:26389879
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4613299/
Abstract

Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S₀) to an excited singlet state (S₁-Sn), followed by intersystem crossing to an excited triplet state (T₁). The energy transferred from T₁ to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (¹O₂, H₂O₂, O₂*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

摘要

光动力疗法(PDT)是一种非侵入性的联合治疗方式,它利用光、光敏剂(PS)和氧气来治疗癌症及其他疾病。当细胞中的光敏剂暴露于特定波长的光时,它们会从单重基态(S₀)转变为激发单重态(S₁ - Sn),随后通过系间窜越转变为激发三重态(T₁)。通过I型和II型反应,从T₁转移到生物底物和分子氧的能量会产生活性氧(¹O₂、H₂O₂、O₂*、HO*),这些活性氧会导致细胞损伤,进而通过坏死或凋亡导致肿瘤细胞死亡。光敏剂的溶解性、选择性和靶向性是光动力疗法中必须考虑的重要因素。用有机和无机纳米颗粒对光敏剂进行纳米制剂化是满足理想光动力疗法系统要求的一种潜在策略。在这篇综述中,我们总结了几种已被研究用于提高光动力疗法抗癌疗效的有机和无机光敏剂载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/ebf35ff32f53/ijms-16-22094-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/917aca03226c/ijms-16-22094-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/1149979a90d8/ijms-16-22094-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/ead6c8ad9e28/ijms-16-22094-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/2e76b8a6fc98/ijms-16-22094-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/72c568b31eb4/ijms-16-22094-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/ebf35ff32f53/ijms-16-22094-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/917aca03226c/ijms-16-22094-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/1149979a90d8/ijms-16-22094-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/ead6c8ad9e28/ijms-16-22094-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/2e76b8a6fc98/ijms-16-22094-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/72c568b31eb4/ijms-16-22094-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6980/4613299/ebf35ff32f53/ijms-16-22094-g006.jpg

相似文献

[1]
Drug Carrier for Photodynamic Cancer Therapy.

Int J Mol Sci. 2015-9-14

[2]
Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy.

Mater Sci Eng C Mater Biol Appl. 2020-10

[3]
Inorganic nanoparticles for enhanced photodynamic cancer therapy.

Curr Drug Discov Technol. 2011-9

[4]
Nanoparticles as vehicles for delivery of photodynamic therapy agents.

Trends Biotechnol. 2008-11

[5]
Nanophotosensitizers toward advanced photodynamic therapy of Cancer.

Cancer Lett. 2012-9-24

[6]
Calcium phosphate-based organic-inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy.

Biomater Sci. 2016-5-26

[7]
Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers.

Curr Drug Metab. 2009-10

[8]
A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.

Photodiagnosis Photodyn Ther. 2018-3-26

[9]
Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer.

Nano Lett. 2007-9

[10]
Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy.

ACS Appl Mater Interfaces. 2019-11-19

引用本文的文献

[1]
Recent advancements and perspectives of photoresponsive inorganic nanomaterials for cancer phototherapy and diagnosis.

RSC Adv. 2025-5-12

[2]
The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment.

J Biophotonics. 2025-6

[3]
Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer.

Nanomaterials (Basel). 2024-9-26

[4]
Preparation of Composite Hydrogels Based on Cysteine-Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy.

Gels. 2024-9-5

[5]
Recent Advances in Photodynamic Therapy: Metal-Based Nanoparticles as Tools to Improve Cancer Therapy.

Pharmaceutics. 2024-7-12

[6]
Revolutionizing cancer therapy using tetrahedral DNA nanostructures as intelligent drug delivery systems.

Nanoscale Adv. 2024-5-28

[7]
Development of 5-Fluorouracil/pH-Responsive Adjuvant-Embedded Extracellular Vesicles for Targeting αβ Integrin Receptors in Tumors.

Pharmaceutics. 2024-4-29

[8]
Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer.

Protein Sci. 2024-4

[9]
The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review.

J Clin Med. 2023-10-28

[10]
ROS-mediated Therapeutics Combined with Metal-based Porphyrin Nanoparticles and their Applications in Tumor Treatment.

Curr Med Chem. 2025

本文引用的文献

[1]
Dendrimers for drug delivery.

J Mater Chem B. 2014-7-14

[2]
Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment.

J Mater Chem B. 2014-2-7

[3]
Highly efficient "theranostics" system based on surface-modified gold nanocarriers for imaging and photodynamic therapy of cancer.

J Mater Chem B. 2013-11-14

[4]
Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications.

J Mater Chem B. 2013-3-14

[5]
Dye Sensitizers for Photodynamic Therapy.

Materials (Basel). 2013-3-6

[6]
Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities.

Pharmaceuticals (Basel). 2010-5-14

[7]
Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin.

Nanoscale Res Lett. 2011-12

[8]
Can nanotechnology potentiate photodynamic therapy?

Nanotechnol Rev. 2012-3

[9]
p53 family members - important messengers in cell death signaling in photodynamic therapy of cancer?

Photochem Photobiol Sci. 2015-8

[10]
Design strategies and applications of circulating cell-mediated drug delivery systems.

ACS Biomater Sci Eng. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索