Division of Materials Science and Engineering, Hanyang University , Seoul 133-791, Republic of Korea.
Department of Energy Systems Research & Department of Materials Science and Engineering, Ajou University , Suwon 443-739, Republic of Korea.
ACS Nano. 2015 Oct 27;9(10):9964-73. doi: 10.1021/acsnano.5b05342. Epub 2015 Oct 1.
The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.
金属氧化物半导体中电荷输运机制的光化学可调性非常有趣,因为它可能提供一种简便而有效的半导体-金属转变,这是由于各种基于氧化物的器件应用的光化学修饰的电子结构。这可能提供一种可行的氢(H)自由基掺杂,以实现有效的 H 掺杂金属氧化物,这在热和离子注入技术中无法以可靠和可控的方式实现。在这项研究中,我们报告了通过氢掺杂将 InGaZnO(IGZO)半导体光化学转化为透明导体,在室温下在 IGZO/玻璃界面处形成的局部纳米晶。与热或离子 H 掺杂相比,IGZO 表面的紫外光暴露促进了与 H 自由基的光化学反应,形成表面金属-OH 层和体 H 掺杂,作为可调谐和稳定的高掺杂 n 型掺杂通道,将 IGZO 转化为透明导体。这导致载流子传导特性完全转化为金属传导水平,方阻约为 16 Ω/□,室温下 Hall 迁移率为 11.8 cm²/V·s,载流子浓度约为 10²⁰ cm⁻³,而不损失光学透明度。我们通过光学剂量控制展示了光化学高 n 掺杂金属氧化物在透明导体中的成功应用,具有优异的化学和光学掺杂稳定性。