Schaub Franz X, Reza Md Shamim, Flaveny Colin A, Li Weimin, Musicant Adele M, Hoxha Sany, Guo Min, Cleveland John L, Amelio Antonio L
Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida.
Cancer Res. 2015 Dec 1;75(23):5023-33. doi: 10.1158/0008-5472.CAN-14-3538. Epub 2015 Sep 30.
Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep-sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity, and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bifunctional nature of these LumiFluor reporters enables greatly improved spatiotemporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, noninvasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes.
荧光蛋白被广泛用于研究分子和细胞事件,但传统上这依赖于激发光的传递,而激发光可引发自发荧光、光毒性和光漂白,从而妨碍其在体内的应用。因此,诸如由荧光素酶产生的化学发光光源应运而生,因为它们不需要激发光。然而,目前的荧光素酶报告基因缺乏在深部组织中可视化事件所需的亮度。我们报告了嵌合eGFP-NanoLuc(GpNLuc)和LSSmOrange-NanoLuc(OgNLuc)融合报告蛋白的创建,我们将其命名为LumiFluors,它结合了eGFP或LSSmOrange荧光蛋白的优点以及由深海虾纤细角对虾的增强型小荧光素酶亚基(NanoLuc)产生的明亮的辉光型生物发光。NanoLuc与融合荧光团之间发生的分子内生物发光共振能量转移产生了迄今为止已知的最亮生物发光信号,包括强度提高、灵敏度提高和持久的光谱特性,从而显著缩短图像采集时间并允许进行高灵敏度的体内成像。值得注意的是,这些LumiFluor报告基因的自发光和双功能特性通过体内光学成像极大地改善了对极少量肿瘤细胞的时空监测,并且还允许通过流式细胞术分离和分析单细胞。因此,LumiFluor报告基因是廉价、稳健、非侵入性的工具,可显著改善对致瘤过程的体内光学成像。