Suppr超能文献

关于网络建模中有效样本量的问题:渐近性探究

On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry.

作者信息

Kolaczyk Eric D, Krivitsky Pavel N

机构信息

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA.

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2500, Australia.

出版信息

Stat Sci. 2015 May 1;30(2):184-198. doi: 10.1214/14-STS502.

Abstract

The modeling and analysis of networks and network data has seen an explosion of interest in recent years and represents an exciting direction for potential growth in statistics. Despite the already substantial amount of work done in this area to date by researchers from various disciplines, however, there remain many questions of a decidedly foundational nature - natural analogues of standard questions already posed and addressed in more classical areas of statistics - that have yet to even be posed, much less addressed. Here we raise and consider one such question in connection with network modeling. Specifically, we ask, "Given an observed network, what is the sample size?" Using simple, illustrative examples from the class of exponential random graph models, we show that the answer to this question can very much depend on basic properties of the networks expected under the model, as the number of vertices in the network grows. In particular, adopting the (asymptotic) scaling of the variance of the maximum likelihood parameter estimates as a notion of effective sample size, say , we show that whether the networks are sparse or not under our model (i.e., having relatively few or many edges between vertices, respectively) is sufficient to yield an order of magnitude difference in , from ( ) to [Formula: see text]. We then explore some practical implications of this result, using both simulation and data on food-sharing from Lamalera, Indonesia.

摘要

近年来,网络及网络数据的建模与分析受到了极大关注,代表了统计学领域一个令人兴奋的潜在增长方向。然而,尽管到目前为止各学科的研究人员在这一领域已经开展了大量工作,但仍然存在许多具有明确基础性的问题——这些问题是统计学更经典领域中已经提出并解决的标准问题的自然类似问题——甚至尚未被提出,更不用说得到解决了。在此,我们提出并思考与网络建模相关的一个此类问题。具体而言,我们要问:“给定一个观测到的网络,样本量是多少?”通过指数随机图模型类中的简单示例,我们表明,随着网络中顶点数量的增加,这个问题的答案很大程度上取决于模型下预期网络的基本属性。特别地,将最大似然参数估计值的方差的(渐近)缩放作为有效样本量的一种度量,比如说 ,我们表明,在我们的模型下网络是稀疏还是密集(即顶点之间分别具有相对较少或较多的边)足以在 中产生一个数量级的差异,从( )到[公式:见正文]。然后,我们利用模拟以及来自印度尼西亚拉马勒拉的食物共享数据,探讨了这一结果的一些实际意义。

相似文献

5
Network meta-analysis, electrical networks and graph theory.网络荟萃分析、电网与图论。
Res Synth Methods. 2012 Dec;3(4):312-24. doi: 10.1002/jrsm.1058. Epub 2012 Sep 25.
7
Entropy of spatial network ensembles.空间网络集合的熵。
Phys Rev E. 2018 Apr;97(4-1):042319. doi: 10.1103/PhysRevE.97.042319.
8
Stochastic blockmodels with a growing number of classes.具有不断增加类别的随机块模型。
Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.
9
Fitting a geometric graph to a protein-protein interaction network.将几何图拟合到蛋白质-蛋白质相互作用网络。
Bioinformatics. 2008 Apr 15;24(8):1093-9. doi: 10.1093/bioinformatics/btn079. Epub 2008 Mar 14.

引用本文的文献

9
Identification of system-level features in HIV migration within a host.在宿主中 HIV 迁移的系统级特征的鉴定。
PLoS One. 2023 Sep 26;18(9):e0291367. doi: 10.1371/journal.pone.0291367. eCollection 2023.
10
Multilevel longitudinal analysis of social networks.社交网络的多层次纵向分析
J R Stat Soc Ser A Stat Soc. 2023 Jan 23;186(3):376-400. doi: 10.1093/jrsssa/qnac009. eCollection 2023 Jul.

本文引用的文献

2
A Separable Model for Dynamic Networks.动态网络的可分离模型
J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46. doi: 10.1111/rssb.12014.
3
Stochastic blockmodels with a growing number of classes.具有不断增加类别的随机块模型。
Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.
4
Instability, Sensitivity, and Degeneracy of Discrete Exponential Families.离散指数族的不稳定性、敏感性和退化性。
J Am Stat Assoc. 2011 Dec 1;106(496):1361-1370. doi: 10.1198/jasa.2011.tm10747. Epub 2012 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验