Eclov Julie A, Qian Qingwen, Redetzke Rebecca, Chen Quanhai, Wu Steven C, Healy Chastity L, Ortmeier Steven B, Harmon Erin, Shearer Gregory C, O'Connell Timothy D
Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN.
Cardiovascular Research, Sanford Research, Sioux Falls, SD.
J Lipid Res. 2015 Dec;56(12):2297-308. doi: 10.1194/jlr.M062034. Epub 2015 Oct 4.
Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor β1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.
射血分数保留的心力衰竭(HFpEF)占所有心力衰竭病例的一半,但标准的心力衰竭治疗方法对其无效。舒张功能障碍通常继发于间质纤维化,在HFpEF中很常见。此前,我们发现,通过12周的ω-3饮食补充产生的超生理水平的ω-3多不饱和脂肪酸(PUFAs)可预防压力超负荷[横向主动脉缩窄(TAC)]后出现的纤维化和收缩功能障碍,TAC是一种类似于HFpEF重塑某些方面的模型。这就引发了几个问题,包括ω-3浓度依赖性心脏保护作用、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的具体作用,以及纤维化预防与收缩功能障碍之间的关系。为了达到更具临床相关性的ω-3水平并测试单个ω-3多不饱和脂肪酸,我们缩短了ω-3饮食方案,并使用特定于EPA和DHA的饮食来检查TAC后的重塑情况。较短的饮食方案产生的ω-3多不饱和脂肪酸水平更接近西方诊所的水平。此外,EPA而非DHA可预防TAC后的纤维化。然而,两种ω-3多不饱和脂肪酸均未预防收缩功能障碍,这可能是由于ω-3多不饱和脂肪酸的摄取减少所致。有趣的是,EPA并未在心脏成纤维细胞中蓄积。然而,游离脂肪酸受体4(一种ω-3多不饱和脂肪酸的G蛋白偶联受体)足以且必需阻断培养的心脏成纤维细胞中的转化生长因子β1纤维化信号传导,这提示了EPA的一种新机制。总之,EPA介导的纤维化预防可能代表了一种治疗HFpEF的新方法。