Davies Wayne I L, Tamai T Katherine, Zheng Lei, Fu Josephine K, Rihel Jason, Foster Russell G, Whitmore David, Hankins Mark W
School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia 6009, Australia; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom;
Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6DE, United Kingdom;
Genome Res. 2015 Nov;25(11):1666-79. doi: 10.1101/gr.189886.115. Epub 2015 Oct 8.
Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates.
光对动物生理和行为的影响不仅仅局限于经典的视觉成像通路。非视觉光感受调节着众多生物系统,包括昼夜节律的同步、DNA修复、新陈代谢和行为。然而,对于这些过程中的大多数,所涉及的光感受分子尚不清楚。鉴于光生理反应的多样性,问题在于视蛋白超家族中是单个光色素还是更多种类的蛋白质能够检测光刺激。在此,通过功能基因组学方法确定了一种对光高度敏感的模式脊椎动物斑马鱼(Danio rerio)中光色素的完整组成,并对其组织分布、表达水平和生化特性进行了表征。本文呈现的结果揭示了42个不同基因的存在,这些基因编码10种经典视觉光色素和32种非视觉视蛋白,其中包括10个新的视蛋白基因,涵盖四个新的色素类别。与斑马鱼中存在可被光同步的昼夜节律振荡器一致,所有检测的成年组织都表达两种或更多种视蛋白,包括几种新的视蛋白。对新视蛋白的光谱和电生理分析表明,它们形成了功能性光色素,每种光色素都具有独特的发色团结合和波长特异性。这项研究揭示了斑马鱼中光色素数量众多且种类多样,这是迄今为止在任何脊椎动物中发现的最多数量。这些基因存在于两栖动物、爬行动物、鸟类以及所有三个哺乳动物类群中,大多数并不局限于硬骨鱼类。因此,非视觉光检测远比最初认为的要复杂得多,这对于理解脊椎动物的光感受具有重要的生物学意义。