School of Engineering, Brown University, Providence, Rhode Island, USA.
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
Nat Methods. 2015 Dec;12(12):1157-62. doi: 10.1038/nmeth.3620. Epub 2015 Oct 12.
Optogenetics, the selective excitation or inhibition of neural circuits by light, has become a transformative approach for dissecting functional brain microcircuits, particularly in in vivo rodent models, owing to the expanding libraries of opsins and promoters. Yet there is a lack of versatile devices that can deliver spatiotemporally patterned light while performing simultaneous sensing to map the dynamics of perturbed neural populations at the network level. We have created optoelectronic actuator and sensor microarrays that can be used as monolithic intracortical implants, fabricated from an optically transparent, electrically highly conducting semiconductor ZnO crystal. The devices can perform simultaneous light delivery and electrical readout in precise spatial registry across the microprobe array. We applied the device technology in transgenic mice to study light-perturbed cortical microcircuit dynamics and their effects on behavior. The functionality of this device can be further expanded to optical imaging and patterned electrical microstimulation.
光遗传学是通过光选择性地激发或抑制神经回路,已经成为解析功能大脑微回路的一种变革性方法,特别是在体内啮齿动物模型中,这要归功于不断扩展的 opsin 和启动子库。然而,仍然缺乏能够在执行同时感测的同时提供时空模式化光的通用设备,以在网络水平上映射受扰神经群体的动力学。我们已经创建了光电执行器和传感器微阵列,可以作为单片皮层内植入物,由光学透明、电导率极高的半导体 ZnO 晶体制成。这些设备可以在微探针阵列中以精确的空间配准同时进行光传输和电读取。我们将该设备技术应用于转基因小鼠中,以研究光干扰的皮层微回路动力学及其对行为的影响。该设备的功能可以进一步扩展到光学成像和模式化电微刺激。