Suppr超能文献

近红外光谱法中微分光程因子的几何依赖性。I. 均匀介质中的稳态

On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium.

作者信息

Piao Daqing, Barbour Randall L, Graber Harry L, Lee Daniel C

机构信息

Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma 74078, United States.

SUNY Downstate Medical Center, Department of Pathology, Brooklyn, New York 11203, United StatescNIRx Medical Technologies LLC, Glen Head, New York 11545, United States.

出版信息

J Biomed Opt. 2015 Oct;20(10):105005. doi: 10.1117/1.JBO.20.10.105005.

Abstract

This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm(−1) and μ′s=1.0  mm(−1) are on average less than 5% different. The approximation for sphere, generally valid for a diameter≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation.

摘要

这项工作分析研究了均匀介质中稳态光子扩散的微分程长因子(DPF)与介质的形状、尺寸、吸收系数和约化散射系数之间的一些相关性。所考虑的介质几何形状包括半无限几何形状、沿方位角方向评估的无限长圆柱体以及球体。圆柱体和球体几何形状中的稳态光子注量率由一种形式表示,该形式涉及物理源、其相对于相关外推半平面的镜像以及一个与半径相关的项,从而得出用于估计DPF的简化公式。在所有三种几何形状中,源 - 探测器距离和介质光学性质保持固定,并且圆柱体和球体具有相等的半径,DPF在半无限几何形状中最大,在球体几何形状中最小。与有限元方法的结果相比,对于半径为50 mm、μa = 0.01 mm⁻¹且μ′s = 1.0 mm⁻¹的球体,在源 - 探测器间距为10至25 mm时,通过分析估计的DPF平均差异小于5%。球体的近似值通常对于直径≥有效衰减程长的20倍是有效的,这对于婴儿头部近红外光谱中DPF的快速估计以及短源 - 探测器间距可能是有用的。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验