Suppr超能文献

动态对比光学相干断层扫描揭示小鼠体感皮层中的层流微血管传输时间分布

Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

作者信息

Merkle Conrad W, Srinivasan Vivek J

机构信息

Department of Biomedical Engineering, University of California at Davis 451 E. Health Sciences Dr. GBSF 2303 Davis CA 95616, USA.

Department of Biomedical Engineering, University of California at Davis 451 E. Health Sciences Dr. GBSF 2303 Davis CA 95616, USA.

出版信息

Neuroimage. 2016 Jan 15;125:350-362. doi: 10.1016/j.neuroimage.2015.10.017. Epub 2015 Oct 20.

Abstract

The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs.

摘要

血液通过脑微血管系统的传输时间分布既限制了氧气输送,又决定了诸如血氧水平依赖性功能磁共振成像(BOLD fMRI)等神经成像信号的动力学。然而,尽管其很重要,但在微观层面全面且高效地量化毛细血管传输时间分布一直具有挑战性。在此,我们介绍一种名为动态对比光学相干断层扫描(DyC-OCT)的方法,它基于血管内示踪剂穿过视野时的动态横截面OCT成像。定量传输时间指标是从与示踪剂浓度密切相关的动态散射信号的时间分析中得出的。由于DyC-OCT不需要对光学焦点进行校准,即使在焦点光斑退化的高散射脑组织深处也能实现定量准确性。在用表面软脑膜血管中使用荧光血浆标记物测量的稀释曲线对DyC-OCT进行直接验证后,我们使用DyC-OCT研究小鼠体感皮层整个深度的微血管系统中的传输时间分布。确定了层状趋势,中间皮层的传输时间更早且异质性更小。中间皮层的早期传输时间可能至少部分解释了在这些层中观察到的早期BOLD fMRI起始时间。异质性中的层依赖性可能有助于解释单一血管供应如何设法向具有不同代谢需求的各个皮层层输送氧气。

相似文献

1
2
Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo.
Neuroimage. 2019 Nov 15;202:116067. doi: 10.1016/j.neuroimage.2019.116067. Epub 2019 Aug 5.
4
Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):393-406. doi: 10.1016/j.neuroimage.2014.08.004. Epub 2014 Aug 8.
6
Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography.
Neurobiol Aging. 2018 Oct;70:148-159. doi: 10.1016/j.neurobiolaging.2018.06.017. Epub 2018 Jun 22.
7
Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15246-51. doi: 10.1073/pnas.1006735107. Epub 2010 Aug 9.
10
Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation.
J Cereb Blood Flow Metab. 2011 Apr;31(4):1051-63. doi: 10.1038/jcbfm.2010.227. Epub 2010 Dec 22.

引用本文的文献

1
Novel identifications of cerebral hemodynamics using BOLD fMRI in patients with sickle cell disease.
Imaging Neurosci (Camb). 2025 May 16;3. doi: 10.1162/IMAG.a.1. eCollection 2025.
2
Low-cost physiology and behavioral monitor for intravital imaging in small mammals.
Neurophotonics. 2025 Jan;12(1):015004. doi: 10.1117/1.NPh.12.1.015004. Epub 2025 Jan 25.
3
Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.
Theranostics. 2025 Jan 1;15(1):122-140. doi: 10.7150/thno.97192. eCollection 2025.
4
Multiparametric Brain Hemodynamics Imaging Using a Combined Ultrafast Ultrasound and Photoacoustic System.
Adv Sci (Weinh). 2024 Aug;11(31):e2401467. doi: 10.1002/advs.202401467. Epub 2024 Jun 17.
6
Neurophotonic tools for microscopic measurements and manipulation: status report.
Neurophotonics. 2022 Jan;9(Suppl 1):013001. doi: 10.1117/1.NPh.9.S1.013001. Epub 2022 Apr 27.
7
Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction.
Nat Commun. 2021 Dec 15;12(1):7295. doi: 10.1038/s41467-021-27534-8.
8
High-resolution, depth-resolved vascular leakage measurements using contrast-enhanced, correlation-gated optical coherence tomography in mice.
Biomed Opt Express. 2021 Mar 2;12(4):1774-1791. doi: 10.1364/BOE.415227. eCollection 2021 Apr 1.
10
Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography.
Biomed Opt Express. 2020 Jul 10;11(8):4255-4274. doi: 10.1364/BOE.399322. eCollection 2020 Aug 1.

本文引用的文献

1
Capillary dysfunction: its detection and causative role in dementias and stroke.
Curr Neurol Neurosci Rep. 2015 Jun;15(6):37. doi: 10.1007/s11910-015-0557-x.
2
The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy.
Diabetologia. 2015 Apr;58(4):666-77. doi: 10.1007/s00125-014-3461-z. Epub 2014 Dec 16.
3
The effects of transit time heterogeneity on brain oxygenation during rest and functional activation.
J Cereb Blood Flow Metab. 2015 Mar;35(3):432-42. doi: 10.1038/jcbfm.2014.213. Epub 2014 Dec 10.
5
Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo.
Neuroimage. 2014 Dec;103:492-501. doi: 10.1016/j.neuroimage.2014.08.051. Epub 2014 Sep 2.
6
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury.
J Cereb Blood Flow Metab. 2014 Oct;34(10):1585-98. doi: 10.1038/jcbfm.2014.131. Epub 2014 Jul 23.
7
Deciphering laminar-specific neural inputs with line-scanning fMRI.
Nat Methods. 2014 Jan;11(1):55-8. doi: 10.1038/nmeth.2730. Epub 2013 Nov 17.
8
The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage.
J Cereb Blood Flow Metab. 2013 Dec;33(12):1825-37. doi: 10.1038/jcbfm.2013.173. Epub 2013 Sep 25.
9
Compartment-resolved imaging of cortical functional hyperemia with OCT angiography.
Biomed Opt Express. 2013 Jul 2;4(8):1255-68. doi: 10.1364/BOE.4.001255. eCollection 2013.
10
Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15115-20. doi: 10.1073/pnas.1307154110. Epub 2013 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验