Suppr超能文献

增强现实技术与结直肠手术中的术中成像

Enhanced Reality and Intraoperative Imaging in Colorectal Surgery.

作者信息

Ris Frederic, Yeung Trevor, Hompes Roel, Mortensen Neil J

机构信息

Service of Visceral Surgery, Geneva University Hospitals, Geneva, Switzerland.

Department of Colorectal Surgery, Oxford University Hospitals, Oxford, United Kingdom.

出版信息

Clin Colon Rectal Surg. 2015 Sep;28(3):158-64. doi: 10.1055/s-0035-1555007.

Abstract

Colorectal surgery is one of the most common procedures performed around the world with more than 600,000 operations each year in the United States, and more than a million worldwide. In the past two decades, there has been a clear trend toward minimal access and surgeons have embraced this evolution. Widespread adoption of advanced minimally invasive procedures is often limited by procedural complexity and the need for specific technical skills. Furthermore, the loss of 3D vision, limited overview of the surgical field, and diminished tactile sensation make major colorectal procedures more challenging and have an impact on the surgeons' learning curves. New technologies are emerging that can compensate for some of the sensory losses associated with laparoscopy. High-definition picture acquisition, 3D camera systems, and the use of biomarkers will allow improved identification of the target structures and help differentiate them from surrounding tissues. In this article, we describe some of the new technologies available and, in particular, focus on the possible implications of biomarkers and fluorescent laparoscopic imaging.

摘要

结直肠手术是全球最常见的手术之一,在美国每年有超过60万例手术,全球每年超过100万例。在过去二十年中,明显呈现出向微创发展的趋势,外科医生也接受了这一演变。先进的微创手术的广泛应用常常受到手术复杂性和对特定技术技能需求的限制。此外,三维视觉的丧失、手术视野的有限概览以及触觉的减弱,使得大型结直肠手术更具挑战性,并对外科医生的学习曲线产生影响。正在出现的新技术可以弥补一些与腹腔镜检查相关的感觉丧失。高清图像采集、三维摄像系统以及生物标志物的使用将有助于更好地识别目标结构,并有助于将它们与周围组织区分开来。在本文中,我们描述了一些可用的新技术,特别是重点介绍生物标志物和荧光腹腔镜成像的潜在影响。

相似文献

1
Enhanced Reality and Intraoperative Imaging in Colorectal Surgery.
Clin Colon Rectal Surg. 2015 Sep;28(3):158-64. doi: 10.1055/s-0035-1555007.
2
Colorectal surgeons should be open to modern surgical technologies for challenging cases.
ANZ J Surg. 2018 Sep;88(9):831-835. doi: 10.1111/ans.14741. Epub 2018 Aug 2.
3
The Effect of Formal Robotic Residency Training on the Adoption of Minimally Invasive Surgery by Young Colorectal Surgeons.
J Surg Educ. 2018 May-Jun;75(3):767-778. doi: 10.1016/j.jsurg.2017.09.006. Epub 2017 Oct 18.
4
Trends in laparoscopic colorectal surgery over time from 2005-2014 using the NSQIP database.
J Surg Res. 2018 Mar;223:16-21. doi: 10.1016/j.jss.2017.09.046. Epub 2017 Nov 9.
5
Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice.
Surg Endosc. 2018 Jan;32(1):24-38. doi: 10.1007/s00464-017-5796-2. Epub 2017 Aug 15.
7
[Advantages and disadvantages of minimally invasive surgery in colorectal cancer surgery].
Zhonghua Wei Chang Wai Ke Za Zhi. 2017 Jun 25;20(6):601-605.
8
Virtual reality simulator training for laparoscopic colectomy: what metrics have construct validity?
Dis Colon Rectum. 2014 Feb;57(2):210-4. doi: 10.1097/DCR.0000000000000031.
9
Virtual reality in surgery and medicine.
Hosp Technol Ser. 1994;13(18):1-48.
10
Psychomotor skills assessment in practicing surgeons experienced in performing advanced laparoscopic procedures.
J Am Coll Surg. 2003 Sep;197(3):479-88. doi: 10.1016/S1072-7515(03)00535-0.

引用本文的文献

4
[Evidence of indocyanine green fluorescence in robotically assisted colorectal surgery : What is the status?].
Chirurg. 2021 Feb;92(2):115-121. doi: 10.1007/s00104-020-01340-2. Epub 2021 Jan 11.
5
Reducing anastomotic leak in colorectal surgery: The old dogmas and the new challenges.
World J Gastroenterol. 2019 Sep 14;25(34):5017-5025. doi: 10.3748/wjg.v25.i34.5017.
6
Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery.
Tech Coloproctol. 2019 Jan;23(1):53-63. doi: 10.1007/s10151-018-1914-y. Epub 2019 Jan 17.
7
Quantitative perfusion assessment of intestinal anastomoses in pigs treated with glucagon-like peptide 2.
Langenbecks Arch Surg. 2018 Nov;403(7):881-889. doi: 10.1007/s00423-018-1718-6. Epub 2018 Oct 18.
8
Does near-infrared (NIR) fluorescence angiography modify operative strategy during emergency procedures?
Surg Endosc. 2018 Oct;32(10):4351-4356. doi: 10.1007/s00464-018-6226-9. Epub 2018 May 16.
9
Multicentre phase II trial of near-infrared imaging in elective colorectal surgery.
Br J Surg. 2018 Sep;105(10):1359-1367. doi: 10.1002/bjs.10844. Epub 2018 Apr 16.

本文引用的文献

1
Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid.
Int J Oncol. 2014 Jul;45(1):41-6. doi: 10.3892/ijo.2014.2417. Epub 2014 May 6.
2
5
The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery.
Surg Endosc. 2014 May;28(5):1695-702. doi: 10.1007/s00464-013-3377-6. Epub 2014 Jan 3.
7
The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery.
Surg Endosc. 2013 Aug;27(8):3003-8. doi: 10.1007/s00464-013-2832-8. Epub 2013 Feb 13.
9
Comparison of intestinal microcirculation and wound healing in a rat model.
J Invest Surg. 2013 Feb;26(1):46-52. doi: 10.3109/08941939.2012.692759. Epub 2012 Dec 28.
10
Intra-operative transanal near infrared imaging of colorectal anastomotic perfusion: a feasibility study.
Colorectal Dis. 2013 Jan;15(1):91-6. doi: 10.1111/j.1463-1318.2012.03101.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验