Suppr超能文献

用于测量活细胞中蛋白质流动性和相互作用的同步荧光恢复后光漂白(FRAP)、荧光寿命成像显微镜(FLIM)和荧光各向异性成像显微镜(FAIM)技术

Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells.

作者信息

Levitt James A, Morton Penny E, Fruhwirth Gilbert O, Santis George, Chung Pei-Hua, Parsons Maddy, Suhling Klaus

机构信息

Department of Physics, King's College London, Strand, London WC2R 2LS, UK.

Division of Asthma, Allergy, and Lung Biology, Guys Campus, King's College London, London, UK ; Randall Division of Cell and Molecular Biophysics, Guys Campus, King's College London, London, SE1 1UL, UK.

出版信息

Biomed Opt Express. 2015 Sep 8;6(10):3842-54. doi: 10.1364/BOE.6.003842. eCollection 2015 Oct 1.

Abstract

We present a novel integrated multimodal fluorescence microscopy technique for simultaneous fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging (FLIM) and fluorescence anisotropy imaging (FAIM). This approach captures a series of polarization-resolved fluorescence lifetime images during a FRAP recovery, maximizing the information available from a limited photon budget. We have applied this method to analyse the behaviour of GFP-labelled coxsackievirus and adenovirus receptor (CAR) in living human epithelial cells. Our data reveal that CAR exists in oligomeric states throughout the cell, and that these complexes occur in conjunction with high immobile fractions of the receptor at cell-cell junctions. These findings shed light on previously unknown molecular associations between CAR receptors in intact cells and demonstrate the power of combined FRAP, FLIM and FAIM microscopy as a robust method to analyse complex multi-component dynamics in living cells.

摘要

我们提出了一种新型的集成多模态荧光显微镜技术,用于同时进行光漂白后荧光恢复(FRAP)、荧光寿命成像(FLIM)和荧光各向异性成像(FAIM)。这种方法在FRAP恢复过程中捕获一系列偏振分辨荧光寿命图像,从而从有限的光子预算中获取最大的可用信息。我们已将此方法应用于分析绿色荧光蛋白标记的柯萨奇病毒和腺病毒受体(CAR)在活的人类上皮细胞中的行为。我们的数据显示,CAR在整个细胞中以寡聚体状态存在,并且这些复合物在细胞间连接处与受体的高固定部分同时出现。这些发现揭示了完整细胞中CAR受体之间以前未知的分子关联,并证明了FRAP、FLIM和FAIM联合显微镜作为一种强大方法来分析活细胞中复杂多组分动力学的能力。

相似文献

2
Time-resolved fluorescence microscopy.时间分辨荧光显微镜术
Photochem Photobiol Sci. 2005 Jan;4(1):13-22. doi: 10.1039/b412924p. Epub 2004 Nov 11.

引用本文的文献

5
Enhancing Biochemical Resolution by Hyperdimensional Imaging Microscopy.超维成像显微镜提高生化分辨率。
Biophys J. 2019 May 21;116(10):1815-1822. doi: 10.1016/j.bpj.2019.04.015. Epub 2019 Apr 22.
6
How to prove the existence of metabolons?如何证明代谢体的存在?
Phytochem Rev. 2018;17(2):211-227. doi: 10.1007/s11101-017-9509-1. Epub 2017 Apr 26.
7
Fluorescence anisotropy imaging in drug discovery.荧光各向异性成像在药物发现中的应用。
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:262-288. doi: 10.1016/j.addr.2018.01.019. Epub 2018 Feb 2.

本文引用的文献

5
Fluorescence lifetime imaging--techniques and applications.荧光寿命成像——技术与应用。
J Microsc. 2012 Aug;247(2):119-36. doi: 10.1111/j.1365-2818.2012.03618.x. Epub 2012 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验