Suppr超能文献

用于测量活细胞中蛋白质流动性和相互作用的同步荧光恢复后光漂白(FRAP)、荧光寿命成像显微镜(FLIM)和荧光各向异性成像显微镜(FAIM)技术

Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells.

作者信息

Levitt James A, Morton Penny E, Fruhwirth Gilbert O, Santis George, Chung Pei-Hua, Parsons Maddy, Suhling Klaus

机构信息

Department of Physics, King's College London, Strand, London WC2R 2LS, UK.

Division of Asthma, Allergy, and Lung Biology, Guys Campus, King's College London, London, UK ; Randall Division of Cell and Molecular Biophysics, Guys Campus, King's College London, London, SE1 1UL, UK.

出版信息

Biomed Opt Express. 2015 Sep 8;6(10):3842-54. doi: 10.1364/BOE.6.003842. eCollection 2015 Oct 1.

Abstract

We present a novel integrated multimodal fluorescence microscopy technique for simultaneous fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging (FLIM) and fluorescence anisotropy imaging (FAIM). This approach captures a series of polarization-resolved fluorescence lifetime images during a FRAP recovery, maximizing the information available from a limited photon budget. We have applied this method to analyse the behaviour of GFP-labelled coxsackievirus and adenovirus receptor (CAR) in living human epithelial cells. Our data reveal that CAR exists in oligomeric states throughout the cell, and that these complexes occur in conjunction with high immobile fractions of the receptor at cell-cell junctions. These findings shed light on previously unknown molecular associations between CAR receptors in intact cells and demonstrate the power of combined FRAP, FLIM and FAIM microscopy as a robust method to analyse complex multi-component dynamics in living cells.

摘要

我们提出了一种新型的集成多模态荧光显微镜技术,用于同时进行光漂白后荧光恢复(FRAP)、荧光寿命成像(FLIM)和荧光各向异性成像(FAIM)。这种方法在FRAP恢复过程中捕获一系列偏振分辨荧光寿命图像,从而从有限的光子预算中获取最大的可用信息。我们已将此方法应用于分析绿色荧光蛋白标记的柯萨奇病毒和腺病毒受体(CAR)在活的人类上皮细胞中的行为。我们的数据显示,CAR在整个细胞中以寡聚体状态存在,并且这些复合物在细胞间连接处与受体的高固定部分同时出现。这些发现揭示了完整细胞中CAR受体之间以前未知的分子关联,并证明了FRAP、FLIM和FAIM联合显微镜作为一种强大方法来分析活细胞中复杂多组分动力学的能力。

相似文献

1
Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells.
Biomed Opt Express. 2015 Sep 8;6(10):3842-54. doi: 10.1364/BOE.6.003842. eCollection 2015 Oct 1.
2
Time-resolved fluorescence microscopy.
Photochem Photobiol Sci. 2005 Jan;4(1):13-22. doi: 10.1039/b412924p. Epub 2004 Nov 11.
3
Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM.
Molecules. 2012 Apr 2;17(4):4047-132. doi: 10.3390/molecules17044047.
5
Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.
PLoS One. 2013 Aug 5;8(8):e70687. doi: 10.1371/journal.pone.0070687. Print 2013.
6
Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells.
PLoS One. 2011;6(8):e23338. doi: 10.1371/journal.pone.0023338. Epub 2011 Aug 8.
8
Probing Polarity and pH Sensitivity of Carbon Dots in through Time-Resolved Fluorescence Analyses.
Nanomaterials (Basel). 2023 Jul 14;13(14):2068. doi: 10.3390/nano13142068.
9
Combined Selective Plane Illumination Microscopy and FRAP Maps Intranuclear Diffusion of NLS-GFP.
Biophys J. 2020 Aug 4;119(3):514-524. doi: 10.1016/j.bpj.2020.07.001. Epub 2020 Jul 10.

引用本文的文献

1
Practical guide to fluorescence lifetime imaging microscopy.
Mol Biol Cell. 2025 Jun 1;36(6):tp1. doi: 10.1091/mbc.E24-03-0110.
3
Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer.
Biophys J. 2021 Jan 19;120(2):254-269. doi: 10.1016/j.bpj.2020.11.2275. Epub 2020 Dec 18.
4
High-throughput, multi-parametric, and correlative fluorescence lifetime imaging.
Methods Appl Fluoresc. 2020 Feb 20;8(2):024005. doi: 10.1088/2050-6120/ab7364.
5
Enhancing Biochemical Resolution by Hyperdimensional Imaging Microscopy.
Biophys J. 2019 May 21;116(10):1815-1822. doi: 10.1016/j.bpj.2019.04.015. Epub 2019 Apr 22.
6
How to prove the existence of metabolons?
Phytochem Rev. 2018;17(2):211-227. doi: 10.1007/s11101-017-9509-1. Epub 2017 Apr 26.
7
Fluorescence anisotropy imaging in drug discovery.
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:262-288. doi: 10.1016/j.addr.2018.01.019. Epub 2018 Feb 2.
9
Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor.
Sensors (Basel). 2016 Apr 28;16(5):617. doi: 10.3390/s16050617.

本文引用的文献

3
FRAP in pharmaceutical research: practical guidelines and applications in drug delivery.
Pharm Res. 2014 Feb;31(2):255-70. doi: 10.1007/s11095-013-1146-9. Epub 2013 Sep 10.
5
Fluorescence lifetime imaging--techniques and applications.
J Microsc. 2012 Aug;247(2):119-36. doi: 10.1111/j.1365-2818.2012.03618.x. Epub 2012 May 24.
6
Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression.
ACS Chem Biol. 2012 Aug 17;7(8):1385-92. doi: 10.1021/cb300065w. Epub 2012 May 24.
8
A multi-functional imaging approach to high-content protein interaction screening.
PLoS One. 2012;7(4):e33231. doi: 10.1371/journal.pone.0033231. Epub 2012 Apr 10.
10
HaCaT keratinocytes exhibit a cholesterol and plasma membrane viscosity gradient during directed migration.
Exp Cell Res. 2012 Apr 15;318(7):809-18. doi: 10.1016/j.yexcr.2012.02.007. Epub 2012 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验