Suppr超能文献

基于平稳矩阵逻辑回归的脑-机接口中单次脑电信号的分类优化

Optimizing Single-Trial EEG Classification by Stationary Matrix Logistic Regression in Brain-Computer Interface.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2301-2313. doi: 10.1109/TNNLS.2015.2475618. Epub 2015 Oct 26.

Abstract

In addition to the noisy and limited spatial resolution characteristics of the electroencephalography (EEG) signal, the intrinsic nonstationarity in the EEG data makes the single-trial EEG classification an even more challenging problem in brain-computer interface (BCI). Variations of the signal properties within a session often result in deteriorated classification performance. This is mainly attributed to the reason that the routine feature extraction or classification method does not take the changes in the signal into account. Although several extensions to the standard feature extraction method have been proposed to reduce the sensitivity to nonstationarity in data, they optimize different objective functions from that of the subsequent classification model, and thereby, the extracted features may not be optimized for the classification. In this paper, we propose an approach that directly optimizes the classifier's discriminativity and robustness against the within-session nonstationarity of the EEG data through a single optimization paradigm, and show that it can greatly improve the performance, in particular for the subjects who have difficulty in controlling a BCI. Moreover, the experimental results on two benchmark data sets demonstrate that our approach significantly outperforms the compared approaches in reducing classification error rates.

摘要

除了脑电图(EEG)信号的嘈杂和有限的空间分辨率特点之外,EEG 数据中的固有非平稳性使得单次 EEG 分类成为脑机接口(BCI)中更具挑战性的问题。在会话期间,信号特性的变化经常导致分类性能恶化。这主要归因于常规特征提取或分类方法没有考虑信号的变化。尽管已经提出了几种标准特征提取方法的扩展,以降低对数据非平稳性的敏感性,但它们优化的是与后续分类模型不同的目标函数,因此,提取的特征可能不适用于分类。在本文中,我们提出了一种通过单一优化范例直接优化分类器的辨别力和对 EEG 数据会话内非平稳性的鲁棒性的方法,并表明它可以极大地提高性能,特别是对于难以控制 BCI 的受试者。此外,两个基准数据集上的实验结果表明,我们的方法在降低分类错误率方面明显优于比较方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验