Dubey Mukesh, Jensen Dan Funck, Karlsson Magnus
Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.
Mol Genet Genomics. 2016 Apr;291(2):677-86. doi: 10.1007/s00438-015-1139-y. Epub 2015 Oct 31.
For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.
为实现成功的生物防治相互作用,生物防治生物体必须耐受自身或植物病原体在菌寄生/拮抗相互作用过程中产生的有毒代谢产物、宿主植物在定殖过程中产生的有毒代谢产物以及环境中存在的外源化合物。ATP结合盒(ABC)转运蛋白可通过介导跨细胞膜的主动转运,在有毒化合物的耐受性方面发挥重要作用。本文报道了生物防治真菌粉红粘帚霉IK726菌株中ABC转运蛋白ABCG29的功能特性。基因表达分析表明,在暴露于镰刀菌属霉菌毒素玉米赤霉烯酮(ZEA)以及杀菌剂克菌丹、绿菌灵和甲霜灵时,abcG29的表达被诱导。与禾谷镰刀菌相互作用或暴露于禾谷镰刀菌培养滤液2小时相比,粉红粘帚霉-粉红粘帚霉(Cr-Cr)相互作用期间或暴露于粉红粘帚霉培养滤液2小时时,粉红粘帚霉中abcG29的表达显著更高。与基因表达数据相反,与粉红粘帚霉野生型相比,ΔabcG29菌株对ZEA、杀菌剂或已知可诱导氧化、细胞壁或渗透胁迫的化学试剂的耐受性并未降低。例外情况是,当分生孢子用作接种物时,ΔabcG29菌株对10 mM H2O2的耐受性显著降低。在双平板试验中,ΔabcG29菌株对禾谷镰刀菌、尖孢镰刀菌或灰葡萄孢的拮抗能力与野生型没有差异。然而,在生物防治试验中,通过拟南芥离体叶片试验和大麦根腐病试验分别测定,ΔabcG29菌株保护拟南芥叶片免受灰葡萄孢侵害以及保护大麦幼苗免受禾谷镰刀菌侵害的能力降低。这些数据表明,ABCG29对于粉红粘帚霉中ZEA和杀菌剂的耐受性以及拮抗作用并非必需,但对H2O2耐受性和生物防治效果是必需的。