Suppr超能文献

相似文献

1
Determining the Performance of Fluorescence Molecular Imaging Devices Using Traceable Working Standards With SI Units of Radiance.
IEEE Trans Med Imaging. 2016 Mar;35(3):802-11. doi: 10.1109/TMI.2015.2496898. Epub 2015 Nov 3.
2
Comparison of NIR Versus SWIR Fluorescence Image Device Performance Using Working Standards Calibrated With SI Units.
IEEE Trans Med Imaging. 2020 Apr;39(4):944-951. doi: 10.1109/TMI.2019.2937760. Epub 2019 Aug 27.
6
Comprehensive phantom for interventional fluorescence molecular imaging.
J Biomed Opt. 2016 Sep;21(9):091309. doi: 10.1117/1.JBO.21.9.091309.
7
Multi-Parametric Standardization of Fluorescence Imaging Systems Based on a Composite Phantom.
IEEE Trans Biomed Eng. 2020 Jan;67(1):185-192. doi: 10.1109/TBME.2019.2910733. Epub 2019 Apr 11.
8
Development of a PET/Cerenkov-light hybrid imaging system.
Med Phys. 2014 Sep;41(9):092504. doi: 10.1118/1.4893535.

引用本文的文献

2
A novel flexible near-infrared endoscopic device that enables real-time artificial intelligence fluorescence tissue characterization.
PLoS One. 2025 Mar 13;20(3):e0317771. doi: 10.1371/journal.pone.0317771. eCollection 2025.
4
A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging.
Sensors (Basel). 2024 May 30;24(11):3539. doi: 10.3390/s24113539.
5
Tutorial on methods for estimation of optical absorption and scattering properties of tissue.
J Biomed Opt. 2024 Jun;29(6):060801. doi: 10.1117/1.JBO.29.6.060801. Epub 2024 Jun 11.
7
Near-Infrared Fluorescence Tomography and Imaging of Ventricular Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human Primates.
IEEE Trans Med Imaging. 2023 Dec;42(12):3555-3565. doi: 10.1109/TMI.2023.3295247. Epub 2023 Nov 30.
8
Imaging peripheral lymphatic dysfunction in chronic conditions.
Front Physiol. 2023 Mar 15;14:1132097. doi: 10.3389/fphys.2023.1132097. eCollection 2023.
9
Autofluorescence detection and co-axial projection for intraoperative localization of parathyroid gland.
Biomed Eng Online. 2022 Jun 16;21(1):37. doi: 10.1186/s12938-022-01004-8.
10
Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation.
Nat Biomed Eng. 2022 May;6(5):541-558. doi: 10.1038/s41551-022-00890-6. Epub 2022 May 27.

本文引用的文献

1
Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer.
Clin Cancer Res. 2015 Aug 15;21(16):3658-66. doi: 10.1158/1078-0432.CCR-14-3284. Epub 2015 Apr 22.
2
A review of performance of near-infrared fluorescence imaging devices used in clinical studies.
Br J Radiol. 2015 Jan;88(1045):20140547. doi: 10.1259/bjr.20140547.
4
Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update.
Phys Med Biol. 2014 Jan 6;59(1):R1-64. doi: 10.1088/0031-9155/59/1/R1. Epub 2013 Dec 16.
5
Image-guided cancer surgery using near-infrared fluorescence.
Nat Rev Clin Oncol. 2013 Sep;10(9):507-18. doi: 10.1038/nrclinonc.2013.123. Epub 2013 Jul 23.
6
Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update.
Open Surg Oncol J. 2010;2(2):12-25. doi: 10.2174/1876504101002010012.
7
A review of indocyanine green fluorescent imaging in surgery.
Int J Biomed Imaging. 2012;2012:940585. doi: 10.1155/2012/940585. Epub 2012 Apr 22.
8
Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis.
Mol Imaging Biol. 2012 Jun;14(3):261-76. doi: 10.1007/s11307-011-0528-9.
9
The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery.
J Surg Oncol. 2011 Sep 1;104(3):323-32. doi: 10.1002/jso.21943. Epub 2011 Apr 14.
10
Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review.
Cancer. 2011 Nov 1;117(21):4812-22. doi: 10.1002/cncr.26087. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验