Bouyer Jérémy, Dicko Ahmadou H, Cecchi Giuliano, Ravel Sophie, Guerrini Laure, Solano Philippe, Vreysen Marc J B, De Meeûs Thierry, Lancelot Renaud
Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Campus International de Baillarguet, 34398 Montpellier, France; Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, 34398 Montpellier, France; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Interactions Hôtes-Vecteurs-Parasites-Environnement dans les Maladies Tropicales Négligées Dues aux Trypanosomatides, 34398 Montpellier, France; Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, Service de Parasitologie, BP 2057 Dakar, Senegal;
West African Science Service in Climate Change and Adapted Land Use, Climate Change Economics Research Program, Cheikh Anta Diop University, BP 5683, Dakar, Senegal;
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14575-80. doi: 10.1073/pnas.1516778112. Epub 2015 Nov 9.
Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas. Here we focused on Glossina palpalis gambiensis, a riverine tsetse species representing the main vector of trypanosomoses in West Africa. We mapped landscape resistance to tsetse genetic flow, hereafter referred to as friction, to identify natural barriers that isolate tsetse populations. For this purpose, we fitted a statistical model of the genetic distance between 37 tsetse populations sampled in the region, using a set of remotely sensed environmental data as predictors. The least-cost path between these populations was then estimated using the predicted friction map. The method enabled us to avoid the subjectivity inherent in the expert-based weighting of environmental parameters. Finally, we identified potentially isolated clusters of G. p. gambiensis habitat based on a species distribution model and ranked them according to their predicted genetic distance to the main tsetse population. The methodology presented here will inform the choice on the most appropriate intervention strategies to be implemented against tsetse flies in different parts of Africa. It can also be used to control other pests and to support conservation of endangered species.
采采蝇是撒哈拉以南非洲地区致命的人类和动物锥虫的周期性传播媒介。采采蝇控制是这两种疫病综合管理的关键组成部分,但当地根除成功的面积不到受侵染地区的2%。这归因于根除运动中遗漏的残留种群的复苏或来自邻近受侵染地区的再次入侵。在这里,我们聚焦于冈比亚须舌蝇,这是一种栖息在河流区域的采采蝇物种,是西非锥虫病的主要传播媒介。我们绘制了采采蝇基因流动的景观阻力图(以下简称摩擦图),以识别隔离采采蝇种群的天然屏障。为此,我们使用一组遥感环境数据作为预测变量,拟合了该区域37个采采蝇种群之间遗传距离的统计模型。然后,利用预测的摩擦图估计这些种群之间的最低成本路径。该方法使我们能够避免基于专家对环境参数加权所固有的主观性。最后,我们基于物种分布模型确定了冈比亚须舌蝇栖息地可能孤立的集群,并根据它们与主要采采蝇种群的预测遗传距离对其进行排序。本文介绍的方法将为非洲不同地区针对采采蝇实施最合适的干预策略提供参考。它还可用于控制其他害虫,并支持濒危物种的保护。