Gijsberts Crystel M, den Ruijter Hester M, de Kleijn Dominique P V, Huisman Albert, Ten Berg Maarten J, van Wijk Richard H A, Asselbergs Folkert W, Voskuil Michiel, Pasterkamp Gerard, van Solinge Wouter W, Hoefer Imo E
From the Experimental Cardiology Laboratory, University Medical Center Utrecht (CMG, HMDR, DPVDK, GP, IEH); ICIN-Netherlands Heart Institute, Utrecht, The Netherlands (CMG, DPVDK); Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore (DPVDK); Cardiovascular Research Institute (CVRI), National University Heart Centre (NUHCS), National University Health System, Singapore, Singapore (DPVDK); Department of Clinical Chemistry and Hematology (AH, MJTB, RHAVW, WWVS, IEH); Department of Cardiology, University Medical Center Utrecht (FWA, MV); Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands (FWA); and Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK (FWA).
Medicine (Baltimore). 2015 Nov;94(45):e1992. doi: 10.1097/MD.0000000000001992.
Prediction of primary cardiovascular events has been thoroughly investigated since the landmark Framingham risk score was introduced. However, prediction of secondary events after initial events of coronary artery disease (CAD) poses a new challenge. In a cohort of coronary angiography patients (n = 1760), we examined readily available hematological parameters from the UPOD (Utrecht Patient Oriented Database) and their addition to prediction of secondary cardiovascular events. Backward stepwise multivariable Cox regression analysis was used to test their ability to predict death and major adverse cardiovascular events (MACE). Continuous net reclassification improvement (cNRI) and integrated discrimination improvement (IDI) measures were calculated for the hematological parameters on top of traditional risk factors to assess prediction improvement. Panels of 3 to 8 hematological parameters significantly improved prediction of death and adverse events. The IDIs ranged from 0.02 to 0.07 (all P < 0.001) among outcome measures and the cNRIs from 0.11 to 0.40 (P < 0.001 in 5 of 6 outcome measures). In the hematological panels red cell distribution width (RDW) appeared most often. The multivariable adjusted hazard ratio of RDW per 1 standard deviation (SD) increase for MACE was 1.19 [1.08-1.32], P < 0.001. Routinely measured hematological parameters significantly improved prediction of mortality and adverse events in coronary angiography patients. Accurately indicating high-risk patients is of paramount importance in clinical decision-making.
自标志性的弗雷明汉风险评分推出以来,对原发性心血管事件的预测已得到充分研究。然而,冠状动脉疾病(CAD)初始事件后继发性事件的预测带来了新的挑战。在一组冠状动脉造影患者(n = 1760)中,我们检查了来自乌得勒支患者导向数据库(UPOD)的易于获得的血液学参数,以及它们对继发性心血管事件预测的补充作用。采用向后逐步多变量Cox回归分析来测试它们预测死亡和主要不良心血管事件(MACE)的能力。计算了血液学参数在传统危险因素之上的连续净重新分类改善(cNRI)和综合鉴别改善(IDI)指标,以评估预测改善情况。由3至8个血液学参数组成的指标组显著改善了对死亡和不良事件的预测。在各项结局指标中,IDI范围为0.02至0.07(所有P<0.001),cNRI范围为0.11至0.40(6项结局指标中有5项P<0.001)。在血液学指标组中,红细胞分布宽度(RDW)出现的频率最高。MACE每增加1个标准差(SD),RDW经多变量调整后的风险比为1.19[1.08 - 1.32],P<0.001。常规测量的血液学参数显著改善了冠状动脉造影患者死亡率和不良事件的预测。准确识别高危患者在临床决策中至关重要。