Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
Nano Lett. 2023 Jul 12;23(13):5995-6001. doi: 10.1021/acs.nanolett.3c01182. Epub 2023 Jun 22.
Associating atomic vacancies to excited-state transport phenomena in two-dimensional semiconductors demands a detailed understanding of the exciton transitions involved. We study the effect of such defects on the electronic and optical properties of WS-graphene and MoS-graphene van der Waals heterobilayers, employing many-body perturbation theory. We find that chalcogen defects and the graphene interface radically alter the optical properties of the transition-metal dichalcogenide in the heterobilayer, due to a combination of dielectric screening and the many-body nature of defect-induced intralayer and interlayer optical transitions. By analyzing the intrinsic radiative rates of the subgap excitonic features, we show that while defects introduce low-lying optical transitions, resulting in excitons with non-negligible oscillator strength, they decrease the optical response of the pristine-like transition-metal dichalcogenide intralayer excitons. Our findings relate excitonic features with interface design for defect engineering in photovoltaic and transport applications.
关联原子空位与二维半导体中的激发态输运现象需要对所涉及的激子跃迁有详细的了解。我们采用多体微扰理论研究了这些缺陷对 WS-石墨烯和 MoS-石墨烯范德华异质双层的电子和光学性质的影响。我们发现,由于介电屏蔽和缺陷诱导的层内和层间光学跃迁的多体性质的结合,硫属元素缺陷和石墨烯界面极大地改变了异质层中过渡金属二硫属化物的光学性质。通过分析亚带隙激子特征的本征辐射率,我们表明缺陷虽然引入了低能光学跃迁,从而产生了具有不可忽略的振子强度的激子,但它们降低了原始过渡金属二硫属化物层内激子的光学响应。我们的研究结果将激子特征与光伏和输运应用中用于缺陷工程的界面设计联系起来。