Suppr超能文献

利用对社会影响的抵抗力改进集体估计。

Improving Collective Estimations Using Resistance to Social Influence.

作者信息

Madirolas Gabriel, de Polavieja Gonzalo G

机构信息

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal.

出版信息

PLoS Comput Biol. 2015 Nov 13;11(11):e1004594. doi: 10.1371/journal.pcbi.1004594. eCollection 2015 Nov.

Abstract

Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.

摘要

在诸如物体重量或一定体积内物品数量的情况下,群体能够做出精确的集体估计。然而,在其他任务中,例如那些需要记忆或心算的任务,受试者给出的估计往往与实际值有很大偏差。允许群体成员交流他们的估计会产生额外的不良影响,即使个体估计更接近有偏差的集体估计。在这里,我们表明社会互动的这种负面影响可以转化为一种改善集体估计的方法。我们首先获得了一个统计模型,该模型描述了人类在收到其他人的估计时如何改变自己的估计。我们使用现有的实验数据证实了它的预测,即个体使用个人估计和社会估计的加权几何平均值。然后,我们利用这一结果以及每个个体使用不同社会权重值这一事实,设计了一种方法来提取抵制社会影响的子群体。我们发现,这些抵制社会影响的个体子群体能够在很大程度上改善群体估计。这与使用个体宣称的信心的方法形成对比,我们发现后者在群体估计方面没有改善。此外,我们提出的方法不需要使用历史数据来根据表现对个体进行加权。这些结果表明,利用群体中成员的个体特征来更好地提取集体智慧是有好处的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d4/4643903/6389dc99f6f8/pcbi.1004594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验