Suppr超能文献

群体控制:通过分享有偏差的社会信息来减少个体估计偏差。

Crowd control: Reducing individual estimation bias by sharing biased social information.

机构信息

Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.

Institute of Catastrophe Risk Management, Nanyang Technological University, Singapore, Republic of Singapore.

出版信息

PLoS Comput Biol. 2021 Nov 29;17(11):e1009590. doi: 10.1371/journal.pcbi.1009590. eCollection 2021 Nov.

Abstract

Cognitive biases are widespread in humans and animals alike, and can sometimes be reinforced by social interactions. One prime bias in judgment and decision-making is the human tendency to underestimate large quantities. Previous research on social influence in estimation tasks has generally focused on the impact of single estimates on individual and collective accuracy, showing that randomly sharing estimates does not reduce the underestimation bias. Here, we test a method of social information sharing that exploits the known relationship between the true value and the level of underestimation, and study if it can counteract the underestimation bias. We performed estimation experiments in which participants had to estimate a series of quantities twice, before and after receiving estimates from one or several group members. Our purpose was threefold: to study (i) whether restructuring the sharing of social information can reduce the underestimation bias, (ii) how the number of estimates received affects the sensitivity to social influence and estimation accuracy, and (iii) the mechanisms underlying the integration of multiple estimates. Our restructuring of social interactions successfully countered the underestimation bias. Moreover, we find that sharing more than one estimate also reduces the underestimation bias. Underlying our results are a human tendency to herd, to trust larger estimates than one's own more than smaller estimates, and to follow disparate social information less. Using a computational modeling approach, we demonstrate that these effects are indeed key to explain the experimental results. Overall, our results show that existing knowledge on biases can be used to dampen their negative effects and boost judgment accuracy, paving the way for combating other cognitive biases threatening collective systems.

摘要

认知偏差在人类和动物中都很普遍,有时会受到社交互动的强化。在判断和决策中,一个主要的偏差是人类倾向于低估大量的数量。以前关于估计任务中的社会影响的研究通常集中在单个估计对个体和集体准确性的影响上,表明随机分享估计并不能减少低估偏差。在这里,我们测试了一种利用真实值与低估程度之间已知关系的社会信息共享方法,并研究了它是否可以抵消低估偏差。我们进行了估计实验,参与者必须在收到一个或几个小组成员的估计值之前和之后两次估计一系列数量。我们的目的有三个:(i)研究(i)重新构建社会信息的共享是否可以减少低估偏差,(ii)收到的估计数量如何影响对社会影响和估计准确性的敏感性,以及(iii)多个估计值的整合的潜在机制。我们对社交互动的重新构建成功地抵消了低估偏差。此外,我们发现分享多个估计值也可以减少低估偏差。我们的研究结果表明,人类存在从众心理,更倾向于信任比自己更大的估计值而不是更小的估计值,并且不太愿意跟随不同的社会信息。使用计算建模方法,我们证明了这些效应确实是解释实验结果的关键。总体而言,我们的研究结果表明,可以利用现有的偏见知识来减轻其负面影响并提高判断准确性,为应对威胁集体系统的其他认知偏见铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/8659305/f776294cd9ca/pcbi.1009590.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验