Centre for Quantum Computation and Communication Technology, Australian Reseach Council Centre of Excellence, School of Physics, University of New South Wales , Sydney, New South Wales 2052, Australia.
Department of Applied Physics, Eindhoven University of Technology , P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands.
ACS Nano. 2015 Dec 22;9(12):12537-41. doi: 10.1021/acsnano.5b06299. Epub 2015 Nov 20.
Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called locking layers, to limit dopant segregation in highly phosphorus doped silicon monolayers. We present secondary ion mass spectroscopy and atom probe tomography measurements that demonstrate the effectiveness of locking layers in suppressing P segregation. Scanning tunneling micrographs of the surface of the locking layer show that the growth is epitaxial, despite the low growth temperature, while magnetotransport measurements reveal a 50% decrease in the active carrier density. We show that applying a finely tuned rapid thermal anneal can restore the active carrier density to 3.4 × 10(14) cm(-2) while maintaining ultra sharp dopant profiles. In particular, 75% of the initial deposited P is confined in a layer with a full width at half-maximum thickness of 1.0 nm and a peak P concentration of 1.2 × 10(21) cm(-3) (2.5 atom %).
在微电子行业中,人们非常希望得到具有尖锐掺杂轮廓和低电阻率的材料,最近,在开发全外延 Si:P 基量子计算机的过程中,也是如此。在这项工作中,我们使用了薄(单层厚)的室温生长硅层,即所谓的锁定层,以限制高掺杂磷的硅单层中的掺杂剂分凝。我们提供了二次离子质谱和原子探针层析术测量结果,证明了锁定层在抑制 P 分凝方面的有效性。锁定层表面的扫描隧道显微镜图像表明,尽管生长温度较低,但生长仍然是外延的,而磁输运测量则表明活性载流子密度降低了 50%。我们表明,施加精细调整的快速热退火可以将活性载流子密度恢复到 3.4×10(14)cm(-2),同时保持超尖锐的掺杂轮廓。特别地,初始沉积的 P 有 75%被限制在一个半高全宽厚度为 1.0nm、峰值 P 浓度为 1.2×10(21)cm(-3)(2.5 原子%)的层中。