Suppr超能文献

使用硅化钯与原子尺度硅磷器件形成的低电阻、高产量电接触。

Low-Resistance, High-Yield Electrical Contacts to Atom Scale Si:P Devices Using Palladium Silicide.

作者信息

Schmucker Scott W, Namboodiri Pradeep N, Kashid Ranjit, Wang Xiqiao, Hu Binhui, Wyrick Jonathan E, Myers Alline F, Schumacher Joshua D, Silver Richard M, Stewart M D

机构信息

University of Maryland, College Park, Maryland 20742, USA.

National Institute of Standards & Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Phys Rev Appl. 2019;11. doi: 10.1103/PhysRevApplied.11.034071.

Abstract

Scanning tunneling microscopy (STM) enables the fabrication of two-dimensional -doped structures in Si with atomistic precision, with applications from tunnel field-effect transistors to qubits. The combination of a very small contact area and the restrictive thermal budget necessary to maintain the integrity of the layer make developing a robust electrical contact method a significant challenge to realizing the potential of atomically precise devices. We demonstrate a method for electrical contact using PdSi formed at the temperature of silicon overgrowth (250 °C), minimizing the diffusive impact on the layer. We use the transfer length method to show our PdSi contacts have very high yield (99.7% +0.2% -1.5%) and low resistivity (272±41Ωm) in contacting mesa-etched Si:P layers. We also present three terminal measurements of low contact resistance (<1 kΩ) to devices written by STM hydrogen depassivation lithography with similarly high yield (100% +0% -3.2%).

摘要

扫描隧道显微镜(STM)能够以原子精度在硅中制造二维掺杂结构,其应用涵盖从隧道场效应晶体管到量子比特等领域。非常小的接触面积与维持 层完整性所需的严格热预算相结合,使得开发一种稳健的电接触方法成为实现原子精确器件潜力的重大挑战。我们展示了一种在硅外延生长温度(250°C)下形成PdSi进行电接触的方法,将对 层的扩散影响降至最低。我们使用转移长度法表明,在接触台面蚀刻的Si:P 层时,我们的PdSi接触具有非常高的良品率(99.7% +0.2% -1.5%)和低电阻率(272±41Ωm)。我们还展示了对通过STM氢去钝化光刻写入的器件进行的三端测量,其接触电阻低(<1 kΩ),良品率同样很高(100% +0% -3.2%)。

相似文献

2
B-Doped δ-Layers and Nanowires from Area-Selective Deposition of BCl on Si(100).
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):41275-41286. doi: 10.1021/acsami.1c10616. Epub 2021 Aug 18.
3
The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures.
Nanotechnology. 2005 Oct;16(10):2446-9. doi: 10.1088/0957-4484/16/10/076. Epub 2005 Sep 2.
4
Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT.
ACS Nano. 2022 Nov 22;16(11):19114-19123. doi: 10.1021/acsnano.2c08162. Epub 2022 Nov 1.
5
Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon.
Nano Lett. 2016 Sep 14;16(9):5779-84. doi: 10.1021/acs.nanolett.6b02513. Epub 2016 Aug 23.
6
Ohmic Contact to Two-Dimensional Nanofabricated Silicon Structures with a Two-Probe Scanning Tunneling Microscope.
ACS Nano. 2021 Dec 28;15(12):19377-19386. doi: 10.1021/acsnano.1c05777. Epub 2021 Nov 15.
7
Interfacial Silicide Formation and Stress Evolution during Sputter Deposition of Ultrathin Pd Layers on a-Si.
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):39315-39323. doi: 10.1021/acsami.9b11492. Epub 2019 Oct 8.
8
The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.
ACS Nano. 2015 Jul 28;9(7):7080-4. doi: 10.1021/acsnano.5b01638. Epub 2015 Jun 24.
9
Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
Nanotechnology. 2010 Mar 12;21(10):105701. doi: 10.1088/0957-4484/21/10/105701. Epub 2010 Feb 15.
10
Development and Characterization of NO-Plasma Oxide Layers for High-Temperature p-Type Passivating Contacts in Silicon Solar Cells.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47931-47943. doi: 10.1021/acsami.4c10612. Epub 2024 Aug 30.

引用本文的文献

1
Atomic-scale Control of Tunneling in Donor-based Devices.
Commun Phys. 2020;3(1). doi: 10.1038/s42005-020-0343-1.
3
EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning.
Nat Commun. 2024 Jan 24;15(1):694. doi: 10.1038/s41467-024-44790-6.

本文引用的文献

1
Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers.
Nanoscale. 2018 Mar 1;10(9):4488-4499. doi: 10.1039/c7nr07777g.
2
STM patterned nanowire measurements using photolithographically defined implants in Si(100).
Sci Rep. 2018 Jan 29;8(1):1790. doi: 10.1038/s41598-018-20042-8.
3
Silicon epitaxy on H-terminated Si (100) surfaces at 250 °C.
Appl Surf Sci. 2016 Aug 15;378:301-307. doi: 10.1016/j.apsusc.2016.03.212. Epub 2016 Mar 31.
4
Suppressing Segregation in Highly Phosphorus Doped Silicon Monolayers.
ACS Nano. 2015 Dec 22;9(12):12537-41. doi: 10.1021/acsnano.5b06299. Epub 2015 Nov 20.
5
Scanning capacitance microscopy registration of buried atomic-precision donor devices.
Nanotechnology. 2015 Feb 27;26(8):085701. doi: 10.1088/0957-4484/26/8/085701. Epub 2015 Feb 3.
6
One-dimensional electrical contact to a two-dimensional material.
Science. 2013 Nov 1;342(6158):614-7. doi: 10.1126/science.1244358.
8
A single-atom transistor.
Nat Nanotechnol. 2012 Feb 19;7(4):242-6. doi: 10.1038/nnano.2012.21.
10
Atomically precise placement of single dopants in si.
Phys Rev Lett. 2003 Sep 26;91(13):136104. doi: 10.1103/PhysRevLett.91.136104. Epub 2003 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验