QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, GA Delft 2600, The Netherlands.
Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia.
Nat Nanotechnol. 2016 Mar;11(3):247-52. doi: 10.1038/nnano.2015.261. Epub 2015 Nov 16.
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
基于单固态自旋的量子传感器有望实现灵敏度和空间分辨率的独特组合。在传感方面的关键挑战是在给定的时间内并具有高动态范围的情况下实现最小的估计不确定性。已经提出了自适应策略来实现最佳性能,但在固态系统中的实现受到苛刻的实验要求的阻碍。在这里,我们通过将金刚石中电子自旋的单次读出与快速反馈相结合来实现自适应直流传感。通过根据先前的结果实时自适应地调整自旋读出基准,我们在 Ramsey 干涉测量中展示了超过标准测量极限的灵敏度。此外,我们通过模拟和实验发现,在考虑开销和有限的估计时间的情况下,自适应协议相对于最知名的非自适应协议具有独特的优势。使用优化的自适应协议,我们在 1.78 mT 的宽范围内实现了 6.1 ± 1.7 nT Hz(-1/2)的磁场灵敏度。这些结果为固态传感器开辟了一类新的实验,其中利用测量历史的实时知识来获得最佳性能。