Dushenko Sergey, Ambal Kapildeb, McMichael Robert D
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA.
Phys Rev Appl. 2020 Nov 16;14(5). doi: 10.1103/PhysRevApplied.14.054036.
In magnetometry using optically detected magnetic resonance of nitrogen vacancy (NV) centers, we demonstrate more than one order-of-magnitude speed up with sequential Bayesian experiment design as compared with conventional frequency-swept measurements. The NV center is an excellent platform for magnetometry with potential spatial resolution down to few nanometers and demonstrated single-defect sensitivity down to nT/Hz. The NV center is a quantum defect with spin = 1 and coherence time up to several milliseconds at room temperature. Zeeman splitting of the NV energy levels allows detection of the magnetic field via photoluminescence. We compare conventional NV center photoluminescence measurements that use pre-determined sweeps of the microwave frequency with measurements using a Bayesian inference methodology. In sequential Bayesian experiment design, the settings with maximum utility are chosen for each measurement in real time based on the accumulated experimental data. Using this method, we observe an order of magnitude decrease in the NV magnetometry measurement time necessary to achieve a set precision.
在利用氮空位(NV)中心的光探测磁共振进行磁力测量时,我们证明,与传统的频率扫描测量相比,顺序贝叶斯实验设计能使速度提高一个多数量级。NV中心是用于磁力测量的优秀平台,潜在空间分辨率低至几纳米,已证明单缺陷灵敏度低至nT/Hz。NV中心是一种自旋为1的量子缺陷,在室温下相干时间长达几毫秒。NV能级的塞曼分裂允许通过光致发光检测磁场。我们将使用预先确定的微波频率扫描的传统NV中心光致发光测量与使用贝叶斯推理方法的测量进行比较。在顺序贝叶斯实验设计中,根据累积的实验数据实时为每次测量选择效用最大的设置。使用这种方法,我们观察到实现设定精度所需的NV磁力测量时间减少了一个数量级。