Suppr超能文献

用于氮空位中心光探测磁共振的序贯贝叶斯实验设计。

Sequential Bayesian experiment design for optically detected magnetic resonance of nitrogen-vacancy centers.

作者信息

Dushenko Sergey, Ambal Kapildeb, McMichael Robert D

机构信息

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA.

出版信息

Phys Rev Appl. 2020 Nov 16;14(5). doi: 10.1103/PhysRevApplied.14.054036.

Abstract

In magnetometry using optically detected magnetic resonance of nitrogen vacancy (NV) centers, we demonstrate more than one order-of-magnitude speed up with sequential Bayesian experiment design as compared with conventional frequency-swept measurements. The NV center is an excellent platform for magnetometry with potential spatial resolution down to few nanometers and demonstrated single-defect sensitivity down to nT/Hz. The NV center is a quantum defect with spin = 1 and coherence time up to several milliseconds at room temperature. Zeeman splitting of the NV energy levels allows detection of the magnetic field via photoluminescence. We compare conventional NV center photoluminescence measurements that use pre-determined sweeps of the microwave frequency with measurements using a Bayesian inference methodology. In sequential Bayesian experiment design, the settings with maximum utility are chosen for each measurement in real time based on the accumulated experimental data. Using this method, we observe an order of magnitude decrease in the NV magnetometry measurement time necessary to achieve a set precision.

摘要

在利用氮空位(NV)中心的光探测磁共振进行磁力测量时,我们证明,与传统的频率扫描测量相比,顺序贝叶斯实验设计能使速度提高一个多数量级。NV中心是用于磁力测量的优秀平台,潜在空间分辨率低至几纳米,已证明单缺陷灵敏度低至nT/Hz。NV中心是一种自旋为1的量子缺陷,在室温下相干时间长达几毫秒。NV能级的塞曼分裂允许通过光致发光检测磁场。我们将使用预先确定的微波频率扫描的传统NV中心光致发光测量与使用贝叶斯推理方法的测量进行比较。在顺序贝叶斯实验设计中,根据累积的实验数据实时为每次测量选择效用最大的设置。使用这种方法,我们观察到实现设定精度所需的NV磁力测量时间减少了一个数量级。

相似文献

3
Relaxometry with Nitrogen Vacancy (NV) Centers in Diamond.金刚石中的氮空位(NV)中心弛豫率。
Acc Chem Res. 2022 Dec 20;55(24):3572-3580. doi: 10.1021/acs.accounts.2c00520. Epub 2022 Dec 7.

引用本文的文献

2
Automating the practice of science: Opportunities, challenges, and implications.科学实践的自动化:机遇、挑战与影响。
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2401238121. doi: 10.1073/pnas.2401238121. Epub 2025 Jan 27.
3
Optbayesexpt: Sequential Bayesian Experiment Design for Adaptive Measurements.Optbayesexpt:用于自适应测量的序贯贝叶斯实验设计
J Res Natl Inst Stand Technol. 2021 Feb 3;126:126002. doi: 10.6028/jres.126.002. eCollection 2021.

本文引用的文献

2
Blueprint for nanoscale NMR.纳米尺度 NMR 的蓝图。
Sci Rep. 2019 May 6;9(1):6938. doi: 10.1038/s41598-019-43404-2.
8
Magnetometry with nitrogen-vacancy defects in diamond.金刚石中的氮空位缺陷的磁力测量。
Rep Prog Phys. 2014 May;77(5):056503. doi: 10.1088/0034-4885/77/5/056503. Epub 2014 May 6.
9
Nanometre-scale thermometry in a living cell.活细胞中的纳米级测温。
Nature. 2013 Aug 1;500(7460):54-8. doi: 10.1038/nature12373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验