Muller C L, Anacker A M J, Veenstra-VanderWeele J
Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA.
Department of Psychiatry, Columbia University, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
Neuroscience. 2016 May 3;321:24-41. doi: 10.1016/j.neuroscience.2015.11.010. Epub 2015 Nov 11.
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
全血血清素升高,即高血清素血症,是在自闭症谱系障碍(ASD)中发现的首个生物标志物,超过25%的患病儿童存在该情况。血清素系统是参与ASD的合理候选因素,因为它在多个脑系统中,无论在动态过程还是整个发育过程中都具有多效性作用。诱人的线索将这种外周生物标志物与ASD中的大脑和行为变化联系起来,但血清素系统对ASD病理生理学的贡献仍未完全明了。对ASD及一大群创始人群的全血血清素水平研究表明,其遗传性高于该疾病本身,并提示与复发风险有关联。来自神经影像学和尸检样本的新数据也表明ASD患者大脑血清素系统存在变化。对全血血清素水平和ASD风险进行的遗传连锁及关联研究表明,在男性而非女性中,该基因定位于包含血清素转运体(SERT)基因的染色体区域。在有证据表明与该区域存在连锁关系的ASD家族中,多个罕见的SERT氨基酸变体导致细胞模型中血清素摄取的趋同增加。其中一种变体SERT Gly56Ala的基因敲入小鼠模型再现了高血清素血症生物标志物,并显示大脑血清素清除增加、血清素受体敏感性增加以及社交、沟通和重复行为改变。其他啮齿动物模型的数据也表明血清素系统在社交行为、认知灵活性和感觉发育中发挥重要作用。最近的研究表明,血清素与其他系统(如催产素)之间的相互作用可能对社交行为尤为重要。总体而言,这些数据表明血清素系统是针对由一种强大的、可遗传的生物标志物所定义的亚组儿童进行治疗开发的主要候选因素。