Institut für Physikalische Chemie, Karlsruher Institut für Technologie , Kaiserstraße 12, 76131 Karlsruhe, Germany.
Institut für Nanotechnologie, Karlsruher Institut für Technologie , Postfach 3640, 76021 Karlsruhe, Germany.
J Chem Theory Comput. 2015 Mar 10;11(3):969-79. doi: 10.1021/ct501069b.
The two-component extension of the G0W0 method for closed-shell systems based on the previously implemented one-component version in TURBOMOLE that uses localized basis functions is presented. In this way, it is possible to account for spin-orbit effects on one-electron energies of isolated molecular systems at the G0W0 level. We briefly sketch the derivation of the underlying equations, give details about the implementation, and apply the method to several atomic and diatomic systems. The influence of spin-orbit coupling changes calculated first ionization energies by up to 0.7 eV, leading to maximum errors smaller than 0.3 eV. Virtually the same results are obtained with an economic extrapolation scheme based on the one-component G0W0 and the two-component reference state calculation. Furthermore, for binding energies of core levels, two-component G0W0 is very accurate, as demonstrated for mercury and zinc atoms as well as for ZnF2.
本文介绍了基于之前在 TURBOMOLE 中实现的使用局域基函数的单分量版本的闭壳层系统的 G0W0 方法的两分量扩展,该方法可在 G0W0 水平上计算孤立分子系统中单电子能量的自旋轨道效应。我们简要概述了基础方程的推导,详细介绍了实现方法,并将该方法应用于几个原子和双原子系统。自旋轨道耦合的影响使计算出的第一电离能最多改变了 0.7 eV,导致最大误差小于 0.3 eV。基于单分量 G0W0 和两分量参考状态计算的经济外推方案几乎可以得到相同的结果。此外,对于芯层结合能,两分量 G0W0 非常准确,汞和锌原子以及 ZnF2 的结果证明了这一点。