Suppr超能文献

载有地高辛的聚合物纳米颗粒通过BeWo细胞(人胎盘滋养层细胞的体外模型)的转运。

Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast.

作者信息

Albekairi Norah A, Al-Enazy Sanaalarab, Ali Shariq, Rytting Erik

机构信息

Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.

Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA.

出版信息

Ther Deliv. 2015;6(12):1325-34. doi: 10.4155/tde.15.79.

Abstract

BACKGROUND

Fetal arrhythmias can lead to fetal congestive heart failure and hydrops fetalis. Digoxin (the first-line treatment) has low transplacental permeability and high risk of maternal side effects. Biodegradable digoxin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles may increase digoxin transport across BeWo b30 cell monolayers (an in vitro model of trophoblast in human placenta) by reducing the drug's interaction with P-gp. Results/methodology: The nanoparticles showed high encapsulation efficiency and sustained release over 48 h. Transport studies revealed significantly increased permeability across BeWo cell layers of digoxin-loaded nanoparticles when compared with free digoxin. P-gp inhibition also increased the permeability of digoxin, but not digoxin-loaded nanoparticles.

CONCLUSION

This represents a novel treatment strategy for fetal cardiovascular disease which may improve maternal and fetal outcomes.

摘要

背景

胎儿心律失常可导致胎儿充血性心力衰竭和胎儿水肿。地高辛(一线治疗药物)经胎盘的通透性低,且母体副作用风险高。可生物降解的载地高辛聚乙二醇化聚乳酸-羟基乙酸纳米粒可能通过减少药物与P-糖蛋白的相互作用,增加地高辛穿过BeWo b30细胞单层(人胎盘滋养层细胞的体外模型)的转运。结果/方法:纳米粒显示出高包封率,并在48小时内持续释放。转运研究表明,与游离地高辛相比,载地高辛纳米粒穿过BeWo细胞层的通透性显著增加。P-糖蛋白抑制也增加了地高辛的通透性,但对载地高辛纳米粒没有影响。

结论

这代表了一种治疗胎儿心血管疾病的新策略,可能改善母体和胎儿的结局。

相似文献

3
Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model.
Int J Pharm. 2013 Sep 15;454(1):149-57. doi: 10.1016/j.ijpharm.2013.07.010. Epub 2013 Jul 12.
4
Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein.
Eur J Pharmacol. 2000 Nov 10;408(1):1-10. doi: 10.1016/s0014-2999(00)00743-3.
5
In vitro placental model optimization for nanoparticle transport studies.
Int J Nanomedicine. 2012;7:497-510. doi: 10.2147/IJN.S26601. Epub 2012 Jan 31.
7
Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux.
Int J Pharm. 2006 Aug 31;320(1-2):150-6. doi: 10.1016/j.ijpharm.2006.03.045. Epub 2006 Apr 7.
8
10

引用本文的文献

2
Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines.
J Nanobiotechnology. 2023 Nov 29;21(1):456. doi: 10.1186/s12951-023-02165-x.
4
Folate-mediated Transport of Nanoparticles across the Placenta.
Pharm Nanotechnol. 2024;12(2):171-183. doi: 10.2174/2211738511666230717122429.
5
6
Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin.
Pharmaceutics. 2021 Nov 29;13(12):2030. doi: 10.3390/pharmaceutics13122030.
8
Microphysiological systems of the placental barrier.
Adv Drug Deliv Rev. 2020;161-162:161-175. doi: 10.1016/j.addr.2020.08.010. Epub 2020 Aug 26.
9
Placental BCRP/ABCG2 Transporter Prevents Fetal Exposure to the Estrogenic Mycotoxin Zearalenone.
Toxicol Sci. 2019 Apr 1;168(2):394-404. doi: 10.1093/toxsci/kfy303.
10
Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model.
Int J Nanomedicine. 2018 Jul 11;13:4073-4082. doi: 10.2147/IJN.S161319. eCollection 2018.

本文引用的文献

1
Fundamental aspects of solid dispersion technology for poorly soluble drugs.
Acta Pharm Sin B. 2014 Feb;4(1):18-25. doi: 10.1016/j.apsb.2013.11.001. Epub 2013 Dec 5.
2
Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model.
Int J Pharm. 2013 Sep 15;454(1):149-57. doi: 10.1016/j.ijpharm.2013.07.010. Epub 2013 Jul 12.
3
Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds.
Arch Toxicol. 2013 Sep;87(9):1661-9. doi: 10.1007/s00204-013-1074-9. Epub 2013 May 21.
4
Diagnosis and management of fetal heart failure.
Can J Cardiol. 2013 Jul;29(7):759-67. doi: 10.1016/j.cjca.2013.02.001. Epub 2013 May 8.
5
Nanomedicine for uterine leiomyoma therapy.
Ther Deliv. 2013 Feb;4(2):161-75. doi: 10.4155/tde.12.144.
6
Syncytin-1 modulates placental trophoblast cell proliferation by promoting G1/S transition.
Cell Signal. 2013 Apr;25(4):1027-35. doi: 10.1016/j.cellsig.2013.01.008. Epub 2013 Jan 16.
7
PLGA-based nanoparticles: an overview of biomedical applications.
J Control Release. 2012 Jul 20;161(2):505-22. doi: 10.1016/j.jconrel.2012.01.043. Epub 2012 Feb 4.
8
In vitro placental model optimization for nanoparticle transport studies.
Int J Nanomedicine. 2012;7:497-510. doi: 10.2147/IJN.S26601. Epub 2012 Jan 31.
9
Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation.
Brain Res. 2010 Oct 21;1357:9-18. doi: 10.1016/j.brainres.2010.08.016. Epub 2010 Aug 13.
10
Diagnosis and prognosis of fetal cardiomyopathies: a review.
Curr Pharm Des. 2010;16(26):2929-34. doi: 10.2174/138161210793176428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验