Bradford J Cortney, Lukos Jamie R, Ferris Daniel P
Translational Neuroscience Branch, US Army Research Laboratory, Aberdeen Proving Ground, Maryland; School of Kinesiology, University of Michigan, Ann Arbor, Michigan
Applied Research and Advanced Concepts Branch, Space and Naval Warfare Systems Center (SPAWAR), Pacific, San Diego, California; and.
J Neurophysiol. 2016 Feb 1;115(2):958-66. doi: 10.1152/jn.00089.2015. Epub 2015 Dec 16.
The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.
本研究的目的是确定在斜坡上行走与在水平面上行走时,脑电活动是否存在差异。受试者在跑步机上以0%和15%的坡度行走30分钟,同时我们记录脑电图(EEG)。我们使用独立成分(IC)分析将EEG信号解析为最大程度独立的源,然后计算每个IC的偶极子估计值。我们对皮质源IC进行聚类,并分析与步态事件同步的事件相关频谱扰动。在两种情况下,θ波功率在步态周期中均有波动,但在前扣带回、感觉运动和顶叶后簇的斜坡行走过程中更大。我们发现在水平行走时,左侧感觉运动和前扣带回簇中的γ波功率更大。我们还发现了明显的α波和β波波动,这取决于左右感觉运动皮层的步态周期阶段,表明在两种行走条件下均存在皮质侧化。我们通过分离运动伪迹来验证结果。我们发现伪迹的频率激活模式与实际EEG数据不同,这表明行走条件之间的差异是由皮质驱动的,而不是实验的残留伪迹。这些发现表明,与在水平面上行走相比,在斜坡上行走所需的运动模式调整可能需要脊髓上的输入,特别是来自左侧感觉运动皮层、前扣带回和顶叶后区域的输入。这些结果朝着将EEG用作动态脑机接口技术的前馈控制信号迈出了有希望的一步。