Weibel David, Jovanovic Zoran R, Gálvez Elena, Steinfeld Aldo
Department of Mechanical and Process Engineering, ETH Zurich , Zurich 8092, Switzerland.
Department of Mechanical and Process Engineering, ETH Zurich , Zurich 8092, Switzerland ; Solar Technology Laboratory, Paul Scherrer Institute , Villigen 5232, Switzerland.
Chem Mater. 2014 Nov 25;26(22):6486-6495. doi: 10.1021/cm503064f. Epub 2014 Oct 23.
In this work we investigate the mechanism of Zn oxidation with CO and/or HO to produce solar derived fuels (CO and/or H) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO and HO, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or AlO at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded AlO diluent.
在这项工作中,我们研究了锌与一氧化碳和/或水反应生成太阳能衍生燃料(一氧化碳和/或氢气)的机理,这是锌/氧化锌热化学氧化还原循环的一部分。据观察,通过氧化锌的太阳能热还原产生的锌(太阳能锌)中的氧化锌杂质促进了金属锌与一氧化碳和水的氧化反应,使得在低至350℃的温度下几乎能完全转化。从纯锌开始达到相同的反应程度需要相当高的温度,这就需要使用以锌蒸汽形式存在的非常规且难以操作的反应构型。通过在350 - 400℃下利用热重分析法研究用氧化锌或氧化铝稀释的固态锌的氧化反应,来探究这种增强作用的机理。研究发现,氧化锌充当了源自气相的锌的氧化位点,从而作为锌蒸汽的汇集点,并维持锌持续升华的驱动力。由于这种锌升华与剩余固态锌表面致密氧化锌层的生长相互竞争,氧化锌的存在根据其表面积大小增加了反应程度。能量色散X射线(EDX)光谱证实了这一机理,显示在接种了氧化锌的氧化铝稀释剂表面有大量生成的氧化锌沉积。