Sav Sinem, Bossuat Jean-Philippe, Troncoso-Pastoriza Juan R, Claassen Manfred, Hubaux Jean-Pierre
Laboratory for Data Security (LDS), EPFL, Lausanne 1015, Switzerland.
Tune Insight SA, Lausanne 1015, Switzerland.
Patterns (N Y). 2022 Apr 18;3(5):100487. doi: 10.1016/j.patter.2022.100487. eCollection 2022 May 13.
Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a privacy-preserving federated learning-based approach, , for complex models such as convolutional neural networks. relies on multiparty homomorphic encryption and enables the collaborative training of encrypted neural networks with multiple healthcare institutions. We preserve the confidentiality of each institutions' input data, of any intermediate values, and of the trained model parameters. We efficiently replicate the training of a published state-of-the-art convolutional neural network architecture in a decentralized and privacy-preserving manner. Our solution achieves an accuracy comparable with the one obtained with the centralized non-secure solution. guarantees patient privacy and ensures data utility for efficient multi-center studies involving complex healthcare data.
训练准确且稳健的机器学习模型需要大量通常分散在数据孤岛中的数据。然而,由于隐私法规,共享或集中不同医疗机构的数据是不可行的,或者难度极大。在这项工作中,我们通过使用基于隐私保护联邦学习的方法来解决这个问题,该方法适用于卷积神经网络等复杂模型。它依赖多方同态加密,并能与多个医疗机构进行加密神经网络的协同训练。我们保护每个机构输入数据、任何中间值以及训练模型参数的机密性。我们以分散且保护隐私的方式高效地复制已发表的最先进卷积神经网络架构的训练。我们的解决方案实现了与集中式非安全解决方案相当的准确率。它保证了患者隐私,并确保了涉及复杂医疗数据的高效多中心研究的数据效用。