Beckstead Jason W
a University of South Florida College of Nursing.
Multivariate Behav Res. 2012 Mar 30;47(2):224-46. doi: 10.1080/00273171.2012.658331.
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic strategy to isolate, examine, and remove suppression effects has been offered. In this article such an approach, rooted in confirmatory factor analysis theory and employing matrix algebra, is developed. Suppression is viewed as the result of criterion-irrelevant variance operating among predictors. Decomposition of predictor variables into criterion-relevant and criterion-irrelevant components using structural equation modeling permits derivation of regression weights with the effects of criterion-irrelevant variance omitted. Three examples with data from applied research are used to illustrate the approach: the first assesses child and parent characteristics to explain why some parents of children with obsessive-compulsive disorder accommodate their child's compulsions more so than do others, the second examines various dimensions of personal health to explain individual differences in global quality of life among patients following heart surgery, and the third deals with quantifying the relative importance of various aptitudes for explaining academic performance in a sample of nursing students. The approach is offered as an analytic tool for investigators interested in understanding predictor-criterion relationships when complex patterns of intercorrelation among predictors are present and is shown to augment dominance analysis.
多元回归分析中抑制作用(以及多重共线性)的存在使预测变量与标准变量关系的解释变得复杂。回归分析中产生抑制作用的数学条件在方法论文献中受到了相当多的关注,但到目前为止,尚未提供任何用于分离、检验和消除抑制效应的分析策略。在本文中,开发了一种基于验证性因素分析理论并运用矩阵代数的方法。抑制作用被视为预测变量之间存在的与标准变量无关的方差的结果。使用结构方程模型将预测变量分解为与标准变量相关和与标准变量无关的成分,可以得出省略了与标准变量无关的方差影响的回归权重。文中使用了三个来自应用研究的数据示例来说明该方法:第一个示例评估儿童和父母的特征,以解释为什么有些患有强迫症儿童的父母比其他父母更能迁就孩子的强迫行为;第二个示例考察个人健康的各个维度,以解释心脏手术后患者总体生活质量的个体差异;第三个示例涉及量化各种能力对于解释一组护理专业学生学业成绩的相对重要性。该方法作为一种分析工具提供给那些在预测变量之间存在复杂的相互关联模式时,对理解预测变量与标准变量关系感兴趣的研究人员,并被证明可以增强优势分析。