Ota Sadao, Sato Issei, Horisaki Ryoichi
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
JST, PRESTO, 4-1-8 Honcho, Kawaguchi-shi 332-0012, Saitama, Japan.
Microscopy (Oxf). 2020 Apr 8;69(2):61-68. doi: 10.1093/jmicro/dfaa005.
In this review, we focus on the applications of machine learning methods for analyzing image data acquired in imaging flow cytometry technologies. We propose that the analysis approaches can be categorized into two groups based on the type of data, raw imaging signals or features explicitly extracted from images, being analyzed by a trained model. We hope that this categorization is helpful for understanding uniqueness, differences and opportunities when the machine learning-based analysis is implemented in recently developed 'imaging' cell sorters.
在本综述中,我们重点关注机器学习方法在分析成像流式细胞术技术中获取的图像数据方面的应用。我们提出,根据数据类型,即由经过训练的模型分析的原始成像信号或从图像中明确提取的特征,分析方法可分为两类。我们希望这种分类有助于理解在最近开发的“成像”细胞分选仪中实施基于机器学习的分析时的独特性、差异和机遇。