Suppr超能文献

将机器学习方法应用于成像流式细胞术。

Implementing machine learning methods for imaging flow cytometry.

作者信息

Ota Sadao, Sato Issei, Horisaki Ryoichi

机构信息

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

JST, PRESTO, 4-1-8 Honcho, Kawaguchi-shi 332-0012, Saitama, Japan.

出版信息

Microscopy (Oxf). 2020 Apr 8;69(2):61-68. doi: 10.1093/jmicro/dfaa005.

Abstract

In this review, we focus on the applications of machine learning methods for analyzing image data acquired in imaging flow cytometry technologies. We propose that the analysis approaches can be categorized into two groups based on the type of data, raw imaging signals or features explicitly extracted from images, being analyzed by a trained model. We hope that this categorization is helpful for understanding uniqueness, differences and opportunities when the machine learning-based analysis is implemented in recently developed 'imaging' cell sorters.

摘要

在本综述中,我们重点关注机器学习方法在分析成像流式细胞术技术中获取的图像数据方面的应用。我们提出,根据数据类型,即由经过训练的模型分析的原始成像信号或从图像中明确提取的特征,分析方法可分为两类。我们希望这种分类有助于理解在最近开发的“成像”细胞分选仪中实施基于机器学习的分析时的独特性、差异和机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验