Hutcheson Joshua D, Goettsch Claudia, Bertazzo Sergio, Maldonado Natalia, Ruiz Jessica L, Goh Wilson, Yabusaki Katsumi, Faits Tyler, Bouten Carlijn, Franck Gregory, Quillard Thibaut, Libby Peter, Aikawa Masanori, Weinbaum Sheldon, Aikawa Elena
Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Department of Medical Physics &Biomedical Engineering, University College London, London WC1E 6BT, UK.
Nat Mater. 2016 Mar;15(3):335-43. doi: 10.1038/nmat4519. Epub 2016 Jan 11.
Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.
临床证据表明动脉钙化与心血管风险相关。对动脉粥样硬化斑块内应力分布的有限元建模表明,纤维帽中的亚细胞微钙化可能会促进斑块的物质破坏,但大的钙化则可使其稳定。然而,动脉粥样硬化中这种矿物质形成和生长的物理化学机制仍不清楚。在此,我们通过使用模拟动脉粥样硬化纤维帽结构特征的三维胶原蛋白水凝胶,以及对水凝胶和钙化人类斑块进行高分辨率显微镜和光谱分析,证明钙化矿物质的形成和成熟是由一系列事件导致的,这些事件包括钙化细胞外囊泡的聚集、微钙化的形成以及最终大钙化区域的形成。我们还表明,钙化形态与斑块的胶原蛋白含量(动脉粥样硬化斑块稳定性的两个决定因素)相互关联。