Suppr超能文献

纤维帽动脉粥样硬化中微钙化以及脂质/坏死核心钙化的成像与分析

Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma.

作者信息

Maldonado Natalia, Kelly-Arnold Adreanne, Laudier Damien, Weinbaum Sheldon, Cardoso Luis

机构信息

Department of Biomedical Engineering, The City College New York, The City University of New York, Steinman Hall T-401, 140th Street and Convent Ave, New York, NY, 10031, USA.

出版信息

Int J Cardiovasc Imaging. 2015 Jun;31(5):1079-87. doi: 10.1007/s10554-015-0650-x. Epub 2015 Apr 3.

Abstract

The presence of microcalcifications (µCalcs) >5 µm within the cap of human fibroatheroma has been shown to produce a 200-700% increase in peak circumferential stress, which can transform a stable plaque into a vulnerable one, whereas µCalcs < 5 µm do not appear to increase risk. We quantitatively examine the possibility to distinguish caps with µCalcs > 5 µm based on the gross morphological features of fibroatheromas, and the correlation between the size and distribution of µCalcs in the cap and the calcification in the lipid/necrotic core beneath it. Atherosclerotic lesions (N = 72) were imaged using HR-μCT at 2.1-μm resolution for detailed analysis of atheroma morphology and composition, and validated using non-decalcified histology. At 2.1-μm resolution one observes four different patterns of calcification within the lipid/necrotic core, and is able to elucidate the 3D spatial progression of the calcification process using these four patterns. Of the gross morphological features identified, only minimum cap thickness positively correlated with the existence of µCalcs > 5 µm in the cap. We also show that µCalcs in the cap accumulate in the vicinity of the lipid/necrotic core boundary with few on the lumen side of the cap. HR-μCT enables three-dimensional assessment of soft tissue composition, lipid content, calcification patterns within lipid/necrotic cores and analysis of the axial progression of calcification within individual atheroma. The distribution of µCalcs within the cap is highly non-uniform and decreases sharply as one proceeds from the lipid pool/necrotic core boundary to the lumen.

摘要

已证明,人类纤维粥样斑块帽内存在大于5微米的微钙化(µCalcs)会使峰值周向应力增加200%-700%,这会将稳定斑块转变为易损斑块,而小于5微米的µCalcs似乎不会增加风险。我们基于纤维粥样斑块的大体形态特征,定量研究区分帽内µCalcs大于5微米的可能性,以及帽内µCalcs的大小和分布与其下方脂质/坏死核心钙化之间的相关性。使用高分辨率微计算机断层扫描(HR-μCT)以2.1微米分辨率对72个动脉粥样硬化病变进行成像,以详细分析粥样斑块的形态和成分,并使用未脱钙组织学进行验证。在2.1微米分辨率下,可以观察到脂质/坏死核心内四种不同的钙化模式,并能够利用这四种模式阐明钙化过程的三维空间进展。在所确定的大体形态特征中,只有最小帽厚度与帽内µCalcs大于5微米的存在呈正相关。我们还表明,帽内的µCalcs在脂质/坏死核心边界附近聚集,而帽腔侧较少。HR-μCT能够对软组织成分、脂质含量、脂质/坏死核心内的钙化模式进行三维评估,并分析单个粥样斑块内钙化的轴向进展。帽内µCalcs的分布极不均匀,从脂质池/坏死核心边界向管腔方向急剧减少。

相似文献

1
Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma.
Int J Cardiovasc Imaging. 2015 Jun;31(5):1079-87. doi: 10.1007/s10554-015-0650-x. Epub 2015 Apr 3.
4
Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10741-6. doi: 10.1073/pnas.1308814110. Epub 2013 Jun 3.
5
Coronary Artery Calcification: From Mechanism to Molecular Imaging.
JACC Cardiovasc Imaging. 2017 May;10(5):582-593. doi: 10.1016/j.jcmg.2017.03.005.
7
Features of coronary plaque in patients with metabolic syndrome and diabetes mellitus assessed by 3-vessel optical coherence tomography.
Circ Cardiovasc Imaging. 2013 Sep;6(5):665-73. doi: 10.1161/CIRCIMAGING.113.000345. Epub 2013 Aug 6.
8
A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H619-28. doi: 10.1152/ajpheart.00036.2012. Epub 2012 Jul 9.
9
Association of coronary plaque composition and arterial remodelling: a optical coherence tomography study.
Atherosclerosis. 2012 Apr;221(2):405-15. doi: 10.1016/j.atherosclerosis.2011.10.018. Epub 2011 Oct 20.
10

引用本文的文献

2
The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.
Basic Res Cardiol. 2024 Apr;119(2):193-213. doi: 10.1007/s00395-024-01033-5. Epub 2024 Feb 8.
7
Advances in CT Techniques in Vascular Calcification.
Front Cardiovasc Med. 2021 Sep 29;8:716822. doi: 10.3389/fcvm.2021.716822. eCollection 2021.
8
Two-faced Janus: the dual role of macrophages in atherosclerotic calcification.
Cardiovasc Res. 2022 Oct 21;118(13):2768-2777. doi: 10.1093/cvr/cvab301.
9
Consideration of stiffness of wall layers is decisive for patient-specific analysis of carotid artery with atheroma.
PLoS One. 2020 Sep 29;15(9):e0239447. doi: 10.1371/journal.pone.0239447. eCollection 2020.

本文引用的文献

1
Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability.
Curr Opin Lipidol. 2014 Oct;25(5):327-32. doi: 10.1097/MOL.0000000000000105.
3
Changing views of the biomechanics of vulnerable plaque rupture: a review.
Ann Biomed Eng. 2014 Feb;42(2):415-31. doi: 10.1007/s10439-013-0855-x. Epub 2013 Jul 11.
5
Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10741-6. doi: 10.1073/pnas.1308814110. Epub 2013 Jun 3.
6
The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding.
J Biomech. 2013 Jan 18;46(2):396-401. doi: 10.1016/j.jbiomech.2012.10.040. Epub 2012 Dec 6.
7
A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H619-28. doi: 10.1152/ajpheart.00036.2012. Epub 2012 Jul 9.
8
9
Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification.
Circ Res. 2011 May 27;108(11):1381-91. doi: 10.1161/CIRCRESAHA.110.234146.
10
Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries.
Am J Pathol. 2011 Jun;178(6):2879-87. doi: 10.1016/j.ajpath.2011.02.004. Epub 2011 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验