Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Building 46, Room 3037G, Cambridge, MA 02139, USA.
Neuroimage. 2012 Nov 15;63(3):1646-69. doi: 10.1016/j.neuroimage.2012.06.065. Epub 2012 Jul 8.
One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that multiple runs were acquired per subject, even if no explicit "localizer" task was included.
认知神经科学的一个重要目标是发现和解释所有人类大脑共有的特性。在 fMRI 中比较大脑功能激活的传统方法是将每个个体的大脑在笛卡尔坐标系中与模板大脑对齐(例如,蒙特利尔神经学研究所模板)。然而,个体间的解剖结构变异性会导致在组分析中降低灵敏度(当存在显著激活时检测到的能力)和功能分辨率(区分空间相邻但功能不同的神经反应的能力)。先前有人认为,在功能激活位置存在个体间变异性的情况下,使用特定于个体的功能定位器可以提高 fMRI 分析的灵敏度和功能分辨率(例如,Brett 等人,2002 年;Fedorenko 和 Kanwisher,2009 年,2011 年;Fedorenko 等人,2010 年;Kanwisher 等人,1997 年;Saxe 等人,2006 年)。在当前的论文中,我们量化了这种灵敏度和功能分辨率对跨个体功能变异性的依赖性,以便说明这种变异性对传统组分析的高度不利影响。我们表明,使用特定于个体的功能定位器的分析通常在灵敏度和功能分辨率方面都优于传统的基于组的方法,即使对每个分析使用相同的总数据量。我们进一步讨论了传统上仅在基于 ROI 的分析背景下考虑的特定于个体的功能定位方法如何扩展到全脑体素分析。我们得出的结论是,特定于个体的功能定位器特别适合研究大脑功能专业化的问题。可以执行本文中描述的所有分析的 SPM 工具箱是公开的,并且可以追溯性地应用于任何数据集,前提是为每个受试者采集了多个运行,即使没有明确包含“定位器”任务。