Gilmore Rick O
Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
Wiley Interdiscip Rev Cogn Sci. 2016 Mar-Apr;7(2):112-26. doi: 10.1002/wcs.1379. Epub 2016 Jan 24.
The use of the term 'big data' has grown substantially over the past several decades and is now widespread. In this review, I ask what makes data 'big' and what implications the size, density, or complexity of datasets have for the science of human development. A survey of existing datasets illustrates how existing large, complex, multilevel, and multimeasure data can reveal the complexities of developmental processes. At the same time, significant technical, policy, ethics, transparency, cultural, and conceptual issues associated with the use of big data must be addressed. Most big developmental science data are currently hard to find and cumbersome to access, the field lacks a culture of data sharing, and there is no consensus about who owns or should control research data. But, these barriers are dissolving. Developmental researchers are finding new ways to collect, manage, store, share, and enable others to reuse data. This promises a future in which big data can lead to deeper insights about some of the most profound questions in behavioral science.
在过去几十年里,“大数据”一词的使用大幅增加,如今已广泛传播。在这篇综述中,我探讨了是什么让数据“大”,以及数据集的规模、密度或复杂性对人类发展科学有何影响。对现有数据集的调查表明,现有的大型、复杂、多层次和多维度的数据如何能够揭示发展过程的复杂性。与此同时,必须解决与使用大数据相关的重大技术、政策、伦理、透明度、文化和概念问题。目前,大多数大型发展科学数据很难找到且获取不便,该领域缺乏数据共享文化,对于谁拥有或应该控制研究数据也没有共识。但是,这些障碍正在消除。发展研究人员正在寻找新的方法来收集、管理、存储、共享数据,并使其他人能够重复使用这些数据。这预示着一个未来,即大数据能够让我们对行为科学中一些最深刻的问题有更深入的见解。