Suppr超能文献

预测流感病毒抗原位点的突变分布

Predicting the Mutating Distribution at Antigenic Sites of the Influenza Virus.

作者信息

Xu Hongyang, Yang Yiyan, Wang Shuning, Zhu Ruixin, Qiu Tianyi, Qiu Jingxuan, Zhang Qingchen, Jin Li, He Yungang, Tang Kailin, Cao Zhiwei

机构信息

School of Life Science and Technology, Tongji University, Shanghai, China.

Department of Computational Regulatory Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

Sci Rep. 2016 Feb 3;6:20239. doi: 10.1038/srep20239.

Abstract

Mutations of the influenza virus lead to antigenic changes that cause recurrent epidemics and vaccine resistance. Preventive measures would benefit greatly from the ability to predict the potential distribution of new antigenic sites in future strains. By leveraging the extensive historical records of HA sequences for 90 years, we designed a computational model to simulate the dynamic evolution of antigenic sites in A/H1N1. With templates of antigenic sequences, the model can effectively predict the potential distribution of future antigenic mutants. Validation on 10932 HA sequences from the last 16 years showing that the mutated antigenic sites of over 94% of reported strains fell in our predicted profile. Meanwhile, our model can successfully capture 96% of antigenic sites in those dominant epitopes. Similar results are observed on the complete set of H3N2 historical data, supporting the general applicability of our model to multiple sub-types of influenza. Our results suggest that the mutational profile of future antigenic sites can be predicted based on historical evolutionary traces despite the widespread, random mutations in influenza. Coupled with closely monitored sequence data from influenza surveillance networks, our method can help to forecast changes in viral antigenicity for seasonal flu and inform public health interventions.

摘要

流感病毒的突变会导致抗原性变化,引发反复的流行疫情和疫苗抗性。若能预测未来毒株中新抗原位点的潜在分布,预防措施将受益匪浅。通过利用90年的血凝素(HA)序列广泛历史记录,我们设计了一个计算模型来模拟甲型H1N1流感病毒抗原位点的动态演变。借助抗原序列模板,该模型能够有效预测未来抗原突变体的潜在分布。对过去16年的10932条HA序列进行验证表明,超过94%的报告毒株的突变抗原位点落在我们预测的范围内。同时,我们的模型能够成功捕捉这些主要表位中96%的抗原位点。在完整的H3N2历史数据集中也观察到了类似结果,支持了我们的模型对多种流感亚型的普遍适用性。我们的结果表明,尽管流感病毒存在广泛的随机突变,但基于历史进化轨迹可以预测未来抗原位点的突变情况。结合流感监测网络密切监测的序列数据,我们的方法有助于预测季节性流感病毒抗原性的变化,并为公共卫生干预提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb5b/4738307/560a204497be/srep20239-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验