Barkal Layla J, Theberge Ashleigh B, Guo Chun-Jun, Spraker Joe, Rappert Lucas, Berthier Jean, Brakke Kenneth A, Wang Clay C C, Beebe David J, Keller Nancy P, Berthier Erwin
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
Nat Commun. 2016 Feb 4;7:10610. doi: 10.1038/ncomms10610.
The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid-liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria.
微生物次级代谢组具有巨大的合成多样性,使微生物能够调节其对不断变化的微环境的化学反应。传统的代谢组学方法难以探测各种各样的环境或环境动态。在此,我们引入了一类微尺度培养平台,以分析真菌和细菌次级代谢组的化学多样性。通过利用稳定的双相界面,将微培养与通过液 - 液萃取进行的小分子分离相结合,我们实现了使用质谱进行代谢组学规模的分析。该平台有助于探索培养微环境(包括使用现有方法通常难以获得的稀有培养基)、用于代谢物分离的特殊有机溶剂以及微生物突变体。利用曲霉属(一种以其丰富的次级代谢而闻名的真菌属),我们表征了培养几何形状和生长基质对次级代谢的影响,突出了微尺度系统在为天然产物发现解锁未知或隐秘次级代谢物方面的潜在用途。最后,我们展示了这类微流体系统在研究真菌与细菌之间跨界通讯方面的潜力。