Geny Sylvain, Moreno Pedro M D, Krzywkowski Tomasz, Gissberg Olof, Andersen Nicolai K, Isse Abdirisaq J, El-Madani Amro M, Lou Chenguang, Pabon Y Vladimir, Anderson Brooke A, Zaghloul Eman M, Zain Rula, Hrdlicka Patrick J, Jørgensen Per T, Nilsson Mats, Lundin Karin E, Pedersen Erik B, Wengel Jesper, Smith C I Edvard
Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
Nucleic Acids Res. 2016 Mar 18;44(5):2007-19. doi: 10.1093/nar/gkw021. Epub 2016 Feb 8.
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson-Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2'-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
在生理条件下用合成寡核苷酸靶向并侵入双链DNA仍然是一项挑战。双锁核酸(bisLNAs)是能够通过霍氏(Hoogsteen)和沃森-克里克(Watson-Crick)结合的组合侵入超螺旋DNA的钳状寡核苷酸。为了改进bisLNA的设计,我们研究了其结合机制。我们的结果表明,bisLNAs首先通过霍氏臂结合,随后是沃森-克里克臂从尾部开始侵入。基于这种提出的杂交机制,我们设计了具有能够与相邻核碱基堆积的新型连接子的下一代bisLNAs,这是一种以前未应用于任何类型钳状构建体的新策略。尽管霍氏臂限制了侵入,但在引入堆积连接子后,bisLNA的侵入效率明显高于非钳状或含核苷酸连接子的LNA构建体。通过用带正电荷的2'-甘氨酰胺-LNA替代LNA获得了进一步的改进。对于常规的bisLNAs,14个核苷酸的尾部显著增强了侵入。然而,当引入两个堆积连接子时,无尾的bisLNAs能够有效地侵入。最后,在细菌内成功靶向质粒清楚地证明了链侵入可以在生物学相关的环境中发生。