Suppr超能文献

特定肠道微生物和乳酸菌在不同营养条件下生长时的乙醇生成

Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

作者信息

Elshaghabee Fouad M F, Bockelmann Wilhelm, Meske Diana, de Vrese Michael, Walte Hans-Georg, Schrezenmeir Juergen, Heller Knut J

机构信息

Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food)Kiel, Germany; Department of Dairy Science, Faculty of Agriculture, Cairo UniversityGiza, Egypt.

Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany.

出版信息

Front Microbiol. 2016 Jan 29;7:47. doi: 10.3389/fmicb.2016.00047. eCollection 2016.

Abstract

To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD.

摘要

为了深入了解微生物在非酒精性脂肪性肝病(NAFLD)中可能发挥的具体作用,对一些肠道菌、乳酸菌和一种酵母(粪厌氧棒状菌、嗜热栖热放线菌、长双歧杆菌、粪肠球菌、大肠杆菌、嗜酸乳杆菌、发酵乳杆菌、植物乳杆菌、困惑魏斯氏菌、酿酒酵母)进行了高效液相色谱分析,以研究它们在不同碳水化合物(己糖(葡萄糖和果糖)、戊糖(阿拉伯糖和核糖)、二糖(乳糖和乳果糖)以及菊粉)上生长时乙醇的产生情况。酿酒酵母、发酵乳杆菌和困惑魏斯氏菌在葡萄糖上产生的乙醇量最高,酿酒酵母和困惑魏斯氏菌在果糖上产生的乙醇量最高。由于发酵乳杆菌中表达了甘露醇脱氢酶,其在果糖上的乙醇产量显著降低(P<0.05)。丙酮酸和柠檬酸是NAD(+)/NADP(+)再生的两种潜在电子受体,它们分别显著降低了发酵乳杆菌在葡萄糖上生长以及困惑魏斯氏菌在葡萄糖和果糖上生长时的乙醇产量,取而代之产生了乙酸。在由四名超重志愿者的粪便制备的粪便悬液中,添加果糖后发现有乙醇产生。分别添加粪厌氧棒状菌、嗜酸乳杆菌、发酵乳杆菌以及柠檬酸和丙酮酸后,乙醇产生被消除。然而,添加困惑魏斯氏菌导致乙醇产量显著增加(P<0.05)。这些结果表明,像困惑魏斯氏菌这样的微生物,一种异型发酵、甘露醇脱氢酶阴性的乳酸菌,可能通过糖发酵产生的乙醇促进NAFLD,而其他肠道细菌以及同型和异型发酵但甘露醇脱氢酶阳性的乳酸菌可能不会促进NAFLD。此外,我们的研究表明,干扰胃肠道微生物群和微生物代谢的饮食因素在预防或促进NAFLD方面可能很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c414/4732544/30dd3c871332/fmicb-07-00047-g0001.jpg

相似文献

6
Preferential growth stimulation of probiotic bacteria by galactan exopolysaccharide from Weissella confusa KR780676.
Food Res Int. 2021 May;143:110333. doi: 10.1016/j.foodres.2021.110333. Epub 2021 Mar 23.
7
Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum.
Biotechnol Biofuels. 2015 Sep 4;8:132. doi: 10.1186/s13068-015-0325-9. eCollection 2015.
8
10
Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693.
Biotechnol Bioeng. 2003 Jun 30;82(7):864-71. doi: 10.1002/bit.10638.

引用本文的文献

3
Gut microbiota genome features associated with brain injury in extremely premature infants.
Gut Microbes. 2024 Jan-Dec;16(1):2410479. doi: 10.1080/19490976.2024.2410479. Epub 2024 Oct 7.
4
red pigments alleviate high-fat and high-sugar diet-induced NAFLD in mice by modulating the gut microbiota and metabolites.
Food Sci Nutr. 2024 May 21;12(8):5762-5775. doi: 10.1002/fsn3.4208. eCollection 2024 Aug.
6
The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review.
Curr Issues Mol Biol. 2024 Jun 25;46(7):6377-6389. doi: 10.3390/cimb46070381.
7
Endogenous ethanol production in health and disease.
Nat Rev Gastroenterol Hepatol. 2024 Aug;21(8):556-571. doi: 10.1038/s41575-024-00937-w. Epub 2024 Jun 3.
8
A catalog of ethanol-producing microbes in humans.
Future Microbiol. 2024;19(8):697-714. doi: 10.2217/fmb-2023-0250. Epub 2024 May 3.
9
Increased fecal ethanol and enriched ethanol-producing gut bacteria , , and in nonalcoholic steatohepatitis.
Front Cell Infect Microbiol. 2023 Nov 16;13:1279354. doi: 10.3389/fcimb.2023.1279354. eCollection 2023.

本文引用的文献

1
New insights in antibiotic resistance of Lactobacillus species from fermented foods.
Food Res Int. 2015 Dec;78:465-481. doi: 10.1016/j.foodres.2015.09.016. Epub 2015 Sep 18.
2
Gut microbiota and nonalcoholic fatty liver disease.
Ann Hepatol. 2012 Jul-Aug;11(4):440-9.
4
Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.
Appl Environ Microbiol. 2012 May;78(9):3338-42. doi: 10.1128/AEM.00129-12. Epub 2012 Mar 2.
7
Weissella confusa bacteremia in a liver transplant patient with hepatic artery thrombosis.
Transpl Infect Dis. 2011 Jun;13(3):290-3. doi: 10.1111/j.1399-3062.2010.00579.x. Epub 2010 Dec 23.
8
Intestinal fructose transport and malabsorption in humans.
Am J Physiol Gastrointest Liver Physiol. 2011 Feb;300(2):G202-6. doi: 10.1152/ajpgi.00457.2010. Epub 2010 Dec 9.
9
Biotechnological production of mannitol and its applications.
Appl Microbiol Biotechnol. 2011 Feb;89(4):879-91. doi: 10.1007/s00253-010-2979-3. Epub 2010 Nov 10.
10
The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome.
Nat Rev Gastroenterol Hepatol. 2010 May;7(5):251-64. doi: 10.1038/nrgastro.2010.41. Epub 2010 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验