Elshaghabee Fouad M F, Bockelmann Wilhelm, Meske Diana, de Vrese Michael, Walte Hans-Georg, Schrezenmeir Juergen, Heller Knut J
Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food)Kiel, Germany; Department of Dairy Science, Faculty of Agriculture, Cairo UniversityGiza, Egypt.
Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food) Kiel, Germany.
Front Microbiol. 2016 Jan 29;7:47. doi: 10.3389/fmicb.2016.00047. eCollection 2016.
To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD.
为了深入了解微生物在非酒精性脂肪性肝病(NAFLD)中可能发挥的具体作用,对一些肠道菌、乳酸菌和一种酵母(粪厌氧棒状菌、嗜热栖热放线菌、长双歧杆菌、粪肠球菌、大肠杆菌、嗜酸乳杆菌、发酵乳杆菌、植物乳杆菌、困惑魏斯氏菌、酿酒酵母)进行了高效液相色谱分析,以研究它们在不同碳水化合物(己糖(葡萄糖和果糖)、戊糖(阿拉伯糖和核糖)、二糖(乳糖和乳果糖)以及菊粉)上生长时乙醇的产生情况。酿酒酵母、发酵乳杆菌和困惑魏斯氏菌在葡萄糖上产生的乙醇量最高,酿酒酵母和困惑魏斯氏菌在果糖上产生的乙醇量最高。由于发酵乳杆菌中表达了甘露醇脱氢酶,其在果糖上的乙醇产量显著降低(P<0.05)。丙酮酸和柠檬酸是NAD(+)/NADP(+)再生的两种潜在电子受体,它们分别显著降低了发酵乳杆菌在葡萄糖上生长以及困惑魏斯氏菌在葡萄糖和果糖上生长时的乙醇产量,取而代之产生了乙酸。在由四名超重志愿者的粪便制备的粪便悬液中,添加果糖后发现有乙醇产生。分别添加粪厌氧棒状菌、嗜酸乳杆菌、发酵乳杆菌以及柠檬酸和丙酮酸后,乙醇产生被消除。然而,添加困惑魏斯氏菌导致乙醇产量显著增加(P<0.05)。这些结果表明,像困惑魏斯氏菌这样的微生物,一种异型发酵、甘露醇脱氢酶阴性的乳酸菌,可能通过糖发酵产生的乙醇促进NAFLD,而其他肠道细菌以及同型和异型发酵但甘露醇脱氢酶阳性的乳酸菌可能不会促进NAFLD。此外,我们的研究表明,干扰胃肠道微生物群和微生物代谢的饮食因素在预防或促进NAFLD方面可能很重要。