Suppr超能文献

源自语音刺激的人类颞上回频谱时间调制调谐组织

Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.

作者信息

Hullett Patrick W, Hamilton Liberty S, Mesgarani Nima, Schreiner Christoph E, Chang Edward F

机构信息

University of California Berkeley and San Francisco Joint Graduate Group in Bioengineering, Center for Integrative Neuroscience, Department of Otolaryngology-Head and Neck Surgery, and.

Center for Integrative Neuroscience, Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California 94158.

出版信息

J Neurosci. 2016 Feb 10;36(6):2014-26. doi: 10.1523/JNEUROSCI.1779-15.2016.

Abstract

UNLABELLED

The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior-posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception.

SIGNIFICANCE STATEMENT

Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli.

摘要

未标注

人类颞上回(STG)对语音感知至关重要,但STG内语音的频谱-时间处理组织尚不清楚。在这里,为了描述人类STG中语音频谱-时间处理的空间组织,我们在参与者听自然连续语音时使用高密度皮质表面场电位记录。虽然合成宽带刺激并未引起STG的持续激活,但可以从对语音刺激的强烈反应中重建频谱-时间感受野。我们发现,人类STG在频谱-时间调谐上呈现出强大的前后空间分布,其中后颞上回针对频率轴上能量相对恒定(低频谱调制)的时间快速变化的语音进行调谐,而前颞上回针对频率轴上具有高度频谱变化(高频谱调制)的时间缓慢变化的语音进行调谐。这项工作阐明了人类STG中频谱-时间处理的组织,并揭示了在专门用于语音感知的大脑区域中对行为学相关语音信号的处理。

意义声明

大量证据表明人类颞上回(STG)参与语音处理。然而,STG内语音频谱-时间处理的总体组织尚未得到很好的描述。在这里,我们使用自然语音刺激和先进的感受野表征方法来表明,语音中的频谱-时间特征沿人类STG的后-前轴组织良好。这些发现证明了基于频谱-时间调制内容的强大功能组织,并表明STG中编码的许多信息代表了语音刺激的物理声学特性。

相似文献

1
Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.
J Neurosci. 2016 Feb 10;36(6):2014-26. doi: 10.1523/JNEUROSCI.1779-15.2016.
2
A Spatial Map of Onset and Sustained Responses to Speech in the Human Superior Temporal Gyrus.
Curr Biol. 2018 Jun 18;28(12):1860-1871.e4. doi: 10.1016/j.cub.2018.04.033. Epub 2018 May 31.
3
Phonetic feature encoding in human superior temporal gyrus.
Science. 2014 Feb 28;343(6174):1006-10. doi: 10.1126/science.1245994. Epub 2014 Jan 30.
4
The Encoding of Speech Sounds in the Superior Temporal Gyrus.
Neuron. 2019 Jun 19;102(6):1096-1110. doi: 10.1016/j.neuron.2019.04.023.
5
Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
J Neurosci. 2017 Aug 16;37(33):7906-7920. doi: 10.1523/JNEUROSCI.0238-17.2017. Epub 2017 Jul 17.
7
Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
Hear Res. 2014 Jan;307:29-41. doi: 10.1016/j.heares.2013.08.001. Epub 2013 Aug 11.
10
A speech envelope landmark for syllable encoding in human superior temporal gyrus.
Sci Adv. 2019 Nov 20;5(11):eaay6279. doi: 10.1126/sciadv.aay6279. eCollection 2019 Nov.

引用本文的文献

2
Temporal merging into pitch with click train in the macaque auditory cortex.
Natl Sci Rev. 2025 Jan 22;12(6):nwaf026. doi: 10.1093/nsr/nwaf026. eCollection 2025 Jun.
3
Frontal cortex hyperactivation and gamma desynchrony in Fragile X syndrome: Correlates of auditory hypersensitivity.
PLoS One. 2025 May 20;20(5):e0306157. doi: 10.1371/journal.pone.0306157. eCollection 2025.
4
A hierarchy of processing complexity and timescales for natural sounds in the human auditory cortex.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2412243122. doi: 10.1073/pnas.2412243122. Epub 2025 Apr 28.
5
Objectively Measuring Audiovisual Effects in Noise Using Virtual Human Speakers.
Trends Hear. 2025 Jan-Dec;29:23312165251333528. doi: 10.1177/23312165251333528. Epub 2025 Apr 13.
6
Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields.
PLoS Comput Biol. 2025 Jan 2;21(1):e1012721. doi: 10.1371/journal.pcbi.1012721. eCollection 2025 Jan.
8
Classifying coherent versus nonsense speech perception from EEG using linguistic speech features.
Sci Rep. 2024 Aug 14;14(1):18922. doi: 10.1038/s41598-024-69568-0.
10
Spectro-temporal acoustical markers differentiate speech from song across cultures.
Nat Commun. 2024 Jun 6;15(1):4835. doi: 10.1038/s41467-024-49040-3.

本文引用的文献

1
The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts.
Nat Neurosci. 2015 Jun;18(6):903-11. doi: 10.1038/nn.4021. Epub 2015 May 18.
2
The topography of frequency and time representation in primate auditory cortices.
Elife. 2015 Jan 15;4:e03256. doi: 10.7554/eLife.03256.
3
Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.
PLoS Comput Biol. 2014 Jan;10(1):e1003412. doi: 10.1371/journal.pcbi.1003412. Epub 2014 Jan 2.
4
Speech rhythms and multiplexed oscillatory sensory coding in the human brain.
PLoS Biol. 2013 Dec;11(12):e1001752. doi: 10.1371/journal.pbio.1001752. Epub 2013 Dec 31.
5
Syllabic (∼2-5 Hz) and fluctuation (∼1-10 Hz) ranges in speech and auditory processing.
Hear Res. 2013 Nov;305:113-34. doi: 10.1016/j.heares.2013.08.017. Epub 2013 Sep 12.
6
Spectral context affects temporal processing in awake auditory cortex.
J Neurosci. 2013 May 29;33(22):9431-50. doi: 10.1523/JNEUROSCI.3073-12.2013.
7
Spatial representations of temporal and spectral sound cues in human auditory cortex.
Cortex. 2013 Nov-Dec;49(10):2822-33. doi: 10.1016/j.cortex.2013.04.003. Epub 2013 Apr 24.
8
9
Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings.
Cereb Cortex. 2014 Feb;24(2):340-52. doi: 10.1093/cercor/bhs314. Epub 2012 Oct 9.
10
Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus.
PLoS Comput Biol. 2012;8(7):e1002594. doi: 10.1371/journal.pcbi.1002594. Epub 2012 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验