Johnson Winifred M, Kido Soule Melissa C, Kujawinski Elizabeth B
MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
ISME J. 2016 Sep;10(9):2304-16. doi: 10.1038/ismej.2016.6. Epub 2016 Feb 16.
Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter.
微生物作为海洋食物网的基础,并非孤立发挥作用,而是依赖物种间的分子水平相互作用来繁衍。尽管自养和异养微生物之间的某些相互作用类型已有充分记载,但特定有机分子在调节物种间关系和支持生长方面的作用才刚刚开始被理解。在此,我们通过表征异养海洋细菌波氏红杆菌DSS-3对二甲基巯基丙酸内盐(DMSP,一种由浮游植物产生的丰富有机硫代谢物)生长的代谢反应,来研究这样一种相互作用。当在DMSP上培养时,波氏红杆菌合成群体感应分子N-(3-氧代十四烷酰基)-L-高丝氨酸内酯的水平显著高于在丙酸盐上生长时。伴随着群体感应分子的产生,我们观察到细胞内和细胞外代谢物(包括谷氨酰胺、维生素B2和环状氨基酸的生物合成中间体)的差异产生。我们的代谢组学数据表明,波氏红杆菌以一种适应在DMSP存在下的合作生活方式的方式改变其生化途径的调节,预期来自浮游植物的营养物质和更高的微生物密度。这种行为可能发生在下沉的海洋颗粒上,表明这种反应可能会影响有机物质的归宿。