Zhai Mingming, Jing Da, Tong Shichao, Wu Yan, Wang Pan, Zeng Zhaobin, Shen Guanghao, Wang Xin, Xu Qiaoling, Luo Erping
Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Bioelectromagnetics. 2016 Apr;37(3):152-162. doi: 10.1002/bem.21961. Epub 2016 Feb 18.
Substantial evidence indicates that pulsed electromagnetic fields (PEMF) could accelerate fracture healing and enhance bone mass, whereas the unclear mechanism by which PEMF stimulation promotes osteogenesis limits its extensive clinical application. In the present study, effects and potential molecular signaling mechanisms of PEMF on in vitro osteoblasts were systematically investigated. Osteoblast-like MC3T3-E1 cells were exposed to PEMF burst (0.5, 1, 2, or 6 h/day) with 15.38 Hz at various intensities (5 Gs (0.5 mT), 10 Gs (1 mT), or 20 Gs (2 mT)) for 3 consecutive days. PEMF stimulation at 20 Gs (2 mT) for 2 h/day exhibited most prominent promotive effects on osteoblastic proliferation via Cell Counting kit-8 analyses. PEMF exposure induced well-organized cytoskeleton, and promoted formation of extracellular matrix mineralization nodules. Significantly increased proliferation-related gene expressions at the proliferation phase were observed after PEMF stimulation, including Ccnd 1 and Ccne 1. PEMF resulted in significantly increased gene and protein expressions of alkaline phosphatase and osteocalcin at the differentiation phase of osteoblasts rather than the proliferation phase via quantitative reverse transcription polymerase chain reaction and Western blotting analyses. Moreover, PEMF upregulated gene and protein expressions of collagen type 1, Runt-related transcription factor 2 and Wnt/β-catenin signaling (Wnt1, Lrp6, and β-catenin) at proliferation and differentiation phases. Together, our present findings highlight that PEMF stimulated osteoblastic functions through a Wnt/β-catenin signaling-associated mechanism and, hence, regulates downstream osteogenesis-associated gene/protein expressions. Bioelectromagnetics. 37:152-162, 2016. © 2016 Wiley Periodicals, Inc.
大量证据表明,脉冲电磁场(PEMF)可加速骨折愈合并增加骨量,而PEMF刺激促进成骨的机制尚不清楚,这限制了其在临床上的广泛应用。在本研究中,系统地研究了PEMF对体外成骨细胞的作用及其潜在的分子信号机制。将成骨样MC3T3-E1细胞连续3天暴露于不同强度(5高斯(0.5毫特斯拉)、10高斯(1毫特斯拉)或20高斯(2毫特斯拉))、频率为15.38赫兹的PEMF脉冲(每天0.5、1、2或6小时)。通过细胞计数试剂盒-8分析,发现每天2小时、强度为20高斯(2毫特斯拉)的PEMF刺激对成骨细胞增殖具有最显著的促进作用。PEMF暴露诱导了细胞骨架的有序排列,并促进了细胞外基质矿化结节的形成。PEMF刺激后,在增殖阶段观察到增殖相关基因表达显著增加,包括Ccnd 1和Ccne 1。通过定量逆转录聚合酶链反应和蛋白质印迹分析,发现PEMF在成骨细胞分化阶段而非增殖阶段导致碱性磷酸酶和骨钙素的基因和蛋白质表达显著增加。此外,PEMF在增殖和分化阶段上调了1型胶原蛋白、Runt相关转录因子2和Wnt/β-连环蛋白信号通路(Wnt1、Lrp6和β-连环蛋白)的基因和蛋白质表达。总之,我们目前的研究结果表明,PEMF通过Wnt/β-连环蛋白信号相关机制刺激成骨细胞功能,从而调节下游成骨相关基因/蛋白质表达。《生物电磁学》。2016年;37:152 - 162。©2016威利期刊公司。