Tian Ye, Zhang Yugang, Wang Tong, Xin Huolin L, Li Huilin, Gang Oleg
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Mater. 2016 Jun;15(6):654-61. doi: 10.1038/nmat4571. Epub 2016 Feb 22.
Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.
在过去十年中,自组装技术取得的进展表明,纳米和微米级粒子可以被组织成各种各样的有序三维(3D)晶格。然而,从同一组粒子生成不同的所需晶格类型的能力仍然具有挑战性。在这里,我们表明,通过基于DNA设计的多面体框架将纳米粒子连接起来,可以将其组装成晶体和开放的3D框架。框架的几何形状,结合其顶点的DNA辅助结合特性,有助于根据框架几何形状在粒子之间形成明确的拓扑连接。通过这种策略,通过引入相应的DNA多面体框架,可以使用相同的粒子组装不同的晶体晶格。这种方法应该有助于通过晶胞设计实现纳米级晶格的合理组装。